

Analog Integrated Circuits

Topic 16: Coupling Mechanisms

Ali M. Niknejad and Bernhard E. Boser © 2006

Department of Electrical Engineering and Computer Sciences

Coupling Mechanisms

- Interconnects
 - Mostly capacitive
 - Distance helps
 - Isolation in time
- Package (bond wires)
- Supply
- Substrate

Package

- L, M (self and mutual inductance)
- dI/dt: beware of fast transients
 - Fast corner
 - Testing: cool chip!
- Differential circuits
- Orthogonal bond wires
- Isolation with time

Power Supply

- Line / battery
- Regulator
- PCB Traces, decoupling
- IC package
- IC supply
- Circuit block

Source of "Noise"

• Large digital transitions draw current from supply and the pin inductance results in "noise".

Analog "Noise"

- Digital circuits are not the only culprits.
- Any circuit driving a large current off-chip generates "bounce".

Decoupling and Bypassing

- Use bypass capacitors to minimize bounce.
- Use decoupling networks to isolate circuits.
- Use "beads" or resistors to de-Q the isolation networks.

Package Coupling

- Long bond-wires have large self-inductance and higher mutual coupling
- Inductance defined for a *closed loop*. Think of the entire current path, through the board, package, and board.

Pin Selection: Supply

- Adjacent pins good for low inductance power/ground.
- Orthogonal rectangular loops couple less. Think in terms of partial inductance.

Pin Selection: I/O

- Avoid noise pickup on analog inputs.
- Use signals pairs (not GND).
- Use commonmode cancellation techniques.

Advanced Packaging

- Downbonds used in an "exposed paddle" package for low inductance ground. Use many parallel bonds and thin the die if possible.
- In a flip-chip package, bumps form much lower inductance pins.

Long Signal Traces...

- Wires (or large traces) are bad since they form long loops with the "ground signal" (ground plane or another trace) and thus radiate and pick up much noise.
- Route signal + ground together to control and minimize the inductance loop. Better yet, go differential.
- Traces on the order of wavelength should be terminated. Microtrip transmission lines are good because they have a well defined Z0.

Electrical Coupling: Shield

• Shield only needs to be grounded at one point to shield electric field. Ground plane a good way to shield traces.

Ground the "Ground Plane"

• An ungrounded floating "ground plane" can result in an unintended increase the electrical coupling from one circuit to another.

Magnetic Coupling

- Magnetic coupling occurs between wires or traces in a circuit due to magnetic flux leakage.
- Minimize both loops to minimize coupling!

• Will this work?

• The current must flow in the shield to be effective. The return current flows nearby reducing the loop area.

Harmful Ground Connections

• At low frequencies the current takes past of least resistance. So in (c) current will flow in ground plane and present a large capture area, like (a). (b) is best.

Ground Noise

• Model shows that if a ground loop is formed, noise currents can flow and create noisy signals due to "shield" resistance.

Why go Triax?

- A triaxial conductor structure is used to prevent the flow of ground loop currents inside the signal conductor.
- Coaxial structures acts as triaxial shields at very high frequencies due to skin effect.

Balancing Act

- Ground noise models the fact that the ground potential is not constant but varies from point to point.
- Don't want to amplify ground noise!

Common Mode Rejection

- Differential circuits reject ground noise since it's a common mode signal.
- Use a balun if your source isn't differential.

Keep Your Balance

- Any imbalance in a circuit can lead to a noisy differential input voltage.
- Since the path through the source includes the source resistance, it has a different impedance than the return current path.
- A fully balanced source has a symmetric impedance to ground from either terminal.

Substrate

• Every node in your circuit is connected to every other node through the substrate!

Typical Injection/Reception

FET Substrate Network

• FETs couple to substrate through their body contact. For well isolated devices, the coupling occurs through well capacitance.

Substrate Profiles

• Undoped substrate is special order. Typically the substrate is moderately conductive or heavily conductive (epi-substrate).

Common Substrate Types

Epitaxial Substrate

D. K. Su, M. J. Loinaz, S. Masui, and B. A. Wooley, "Experimental results and modeling techniques for substrate noise in mixed-signal integrated circuits," *IEEE Journal of Solid-State Circuits*, vol. 28, pp. 420 - 430, April 1993.

Observed Waveforms

EECS 240 Topic 16: Coupling Mechanisms

Current Flow in Epi-Substrate

- Majority of current flows in low-resistivity wafer
- Coupling is very weak function of distance

EECS 240 Topic 16: Coupling Mechanisms

• Below the dielectric relaxation frequency, the coupling is resistive.

Cross-Talk versus Distance

EECS 240 Topic 16: Coupling Mechanisms

Guard Ring

• Can we build a shield with a guard ring?

Effect of Guard Ring

EECS 240 Topic 16: Coupling Mechanisms

Model for Guard Ring

Shared guard ring contact reduces isolation!

EECS 240 Topic 16: Coupling Mechanisms

Backside Contact

EECS 240 Topic 16: Coupling Mechanisms

Noise vs L₄

Current in High Resistivity Substrate

EECS 240 Topic 16: Coupling Mechanisms

Simulation / Analysis

R. Gharpurey and R. G. Meyer, "Modeling and analysis of substrate coupling in integrated circuits," *IEEE Journal of Solid-State Circuits,* vol. 31, pp. 344 - 353, March 1996.

Balsha R. Stanisic, Nishath Verghese, Rob A. Rutenbar, L. Richard Carley, David J. Allstot; *Addressing substrate coupling in mixed-mode ICs: Simulation and power distribution synthesis*, IEEE Journal of Solid-State Circuits, vol. 29, pp. 226 - 238, March 1994.

Kuntal Joardar; *A simple approach to modeling cross-talk in integrated circuits*, IEEE Journal of Solid-State Circuits, vol. 29, pp. 1212 - 1219, October 1994.

Nishath Verghese, David J. Allstot; *Computer-aided design considerations for mixed-signal coupling in RF integrated circuits*, IEEE Journal of Solid-State Circuits, vol. 33, pp. 314 - 323, March 1998.

A. Samavedam, A. Sadate, K. Mayaram, and T. S. Fiez, "A scalable substrate noise coupling model for design of mixed-signal IC's," *IEEE Journal of Solid-State Circuits,* vol. 35, pp. 895 - 904, June 2000.

Epi Substrate Coupling

R. Gharpurey and R. G. Meyer, "Modeling and analysis of substrate coupling in integrated circuits," *IEEE Journal of Solid-State Circuits,* vol. 31, pp. 344 - 353, March 1996.

Low Resistivity Substrate

EECS 240 Topic 16: Coupling Mechanisms

High Resistivity Substrate

EECS 240 Topic 16: Coupling Mechanisms

Guard Ring

Guard Ring

EECS 240 Topic 16: Coupling Mechanisms

Guard Ring Guidelines

- Marginal improvement of isolation on heavily doped substrates
 - May still be needed to prevent latchup
- Dedicated grounds
- Keep guard ground bondwire away from signals
- Excessively wide / close guard rings reduce isolation
- Place guard ring close to sensitive node
- Use in analog and digital regions, analog being more important

Latchup

Latchup Circuit

- Latchup:
 - Forward biased junction →
 minority carrier injection
 - Q_N or Q_P turns on
 - Supplies I_B to Q_P or Q_N
 - Positive feedback if $\beta_N \beta_P > 1$
 - SCR: "silicon controlled rectifier"
- Preventing latchup: - $\beta_N \beta_P < 1$

Preventing Latchup

- $\beta_N \beta_P < 1$
 - Increased layout spacing
 - \rightarrow increased parasitic base width
 - Increased doping
 - \rightarrow increased carrier recombination in base
- Prevent minority carrier injection
 - no forward biased junctions
- Minority carrier collectors