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Output StagesOutput Stages

• Driving large (resistive) loads
– RC-filters (anti-aliasing)
– Off-chip loads
– Line driver

• Twisted pair: Ethernet, ISDN, ADSL, HPNA
• Coax
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OTAOTA
• Transconductance amplifier

(common-source)

• Excessive power dissipation

• Only appropriate for modest 
loads and multi-stage 
amplifiers
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Source FollowerSource Follower
• Impractical for VDD < 5V

• Push-pull follower
– Class (A)B
– Cross-over distortion
– Quiescent current control
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Class (A)B CommonClass (A)B Common--SourceSource

• Essentially inverter
• Very nonlinear

– Need feedback
– Local (error amplifiers)
– Global

• Biasing
– Dynamic
– Floating voltage source
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Floating Voltage SourceFloating Voltage Source
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Test SetupTest Setup
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VVgs1gs1, V, Vgs2gs2
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IID3D3, I, ID4D4
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IID1D1, I, ID2D2 ((VVoutout = 0V)= 0V)

• Large current capability
• Defined quiescent current
• M1, M2 never turn off
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IID1D1, I, ID2 D2 ((VVoutout = 1.3V)= 1.3V)

• Reduced current drive 
capability for outputs close 
to rail



EECS 240 Topic 14: Output Stages © 2006   A. M. Niknejad and B. Boser   13

ggm1m1, g, gm2m2 ((VVoutout = 0V)= 0V)

• Significant variation
• Weak inversion?
• Circuit not linear!
• Stability?
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ggm1m1, g, gm2m2 ((VVoutout = 1.3V)= 1.3V)
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FeedbackFeedback

Local

K. E. Brehmer and J. B. Wieser, "Large swing CMOS 
power amplifier," IEEE Journal of Solid-State Circuits,
vol. 18, pp. 624 - 629, December 1983. 

Global

J. H. Huijsing and D. Linebarger, "Low-voltage 
operational amplifier with rail-to-rail input and output 
ranges," IEEE Journal of Solid-State Circuits, vol. 20, 
pp. 1144 - 1150, December 1985. 
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Using Helper AmpsUsing Helper Amps

• Lower output resistance, reject distortion
• Introduce offset
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Offset ErrorOffset Error

• Amplifier offset limits gain A
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Hybrid ArchitectureHybrid Architecture

• Use followers and CS output stage together in 
parallel.  M11/M12 only active for high swing.

• Since M11/M12 class B, can increase gain A
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Nested Miller FeedbackNested Miller Feedback

• Nonlinearities are attenuated by loop-gain with all loops (compensation) 
opened multistage amps have an advantage in the mid-band over single-
stage with same dc gain

• Some implementations combine local with nested Miller feedback

Ref: S. Pernici, G. Nicollini, and R. Castello, "A CMOS low-distortion fully differential power amplifier with double 
nested Miller compensation," IEEE Journal of Solid-State Circuits, vol. 28, pp. 758 - 763, July 1993. 
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Implementation ExampleImplementation Example
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Nested Miller AmplifierNested Miller Amplifier

gm1 +gm2 -gm3

Cm2

Cm1

C1 C2 CL

Vi Vo

v1 s Cm1⋅( )⋅ gm1 vi⋅− vo s⋅ Cm1⋅− 0

v2 s Cm2⋅( )⋅ gm2 v1⋅− vo s⋅ Cm2⋅− 0

vo s CL⋅ s Cm1⋅+ s Cm2⋅+( )⋅ gm3 v2⋅+ s Cm1⋅ v1⋅− s Cm2⋅ v2⋅− 0
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Nested Miller OTA AnalysisNested Miller OTA Analysis
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Note: for larger parasitics, p2, p3 can be complex. Faster?
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Feedforward ZerosFeedforward Zeros

1 s
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⋅ 0> RHP, potential problem
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Design ExampleDesign Example

z2

ωu
22.871=

z2

2 π⋅
228.714MHz=z2

1
2

−
gm2
Cm1
⋅ 1 1 4

Cm1 gm3⋅

Cm2 gm2⋅
⋅+−








⋅:=

z1

ωu
72.871−=

z1

2 π⋅
728.714− MHz=z1

1
2

−
gm2
Cm1
⋅ 1 1 4

Cm1 gm3⋅

Cm2 gm2⋅
⋅++








⋅:=

gm1 0.113mS=gm1 Cm1 ωu⋅:=

Cm1 1.8pF=Cm1 3 C1⋅:=

C1 0.6pF=C1
gm2

ωT2
:=ωT2 2 π⋅ 1.5⋅ GHz:=

gm2 5.655mS=gm2 K2 Cm2⋅ ωu⋅:=

Cm2 30pF=Cm2 3 C2⋅:=

C2 10pF=C2
gm3

ωT3
:=ωT3 2 π⋅ 1⋅ GHz:=

gm3 62.832mS=gm3 K3 CL⋅ ωu⋅:=

design:

K2 3:=p2 K2 ωu⋅

K3 10:=p3 K3 ωu⋅

ωu 2 π⋅ fu⋅:=fu 10MHz:=CL 100pF:=

given:

Small RL could set 
additional constraint.
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More Conservative ChoicesMore Conservative Choices

z2

ωu
10.635=

z2

2 π⋅
106.348MHz=z2

1
2

−
gm2
Cm1
⋅ 1 1 4

Cm1 gm3⋅

Cm2 gm2⋅
⋅+−








⋅:=

z1

ωu
29.385−=

z1

2 π⋅
293.848− MHz=z1

1
2

−
gm2
Cm1
⋅ 1 1 4

Cm1 gm3⋅

Cm2 gm2⋅
⋅++








⋅:=

gm1 0.113mS=gm1 Cm1 ωu⋅:=

Cm1 15.36pF=Cm1 8 C1⋅:=

C1 1.92pF=C1
gm2

ωT2
:=ωT2 2 π⋅ 1.5⋅ GHz:=

gm2 18.096mS=gm2 K2 Cm2⋅ ωu⋅:=

Cm2 72pF=Cm2 6 C2⋅:=

C2 12pF=C2
gm3

ωT3
:=ωT3 2 π⋅ 1⋅ GHz:=

gm3 75.398mS=gm3 K3 CL⋅ ωu⋅:=

design:

K2 4:=p2 K2 ωu⋅

K3 12:=p3 K3 ωu⋅

ωu 2 π⋅ fu⋅:=fu 10MHz:=CL 100pF:=

given:


