

Analog Integrated Circuits

Topic 14: Output Stages

Ali M. Niknejad and Bernhard E. Boser © 2006

Department of Electrical Engineering and Computer Sciences

Output Stages

- Driving large (resistive) loads
 - RC-filters (anti-aliasing)
 - Off-chip loads
 - Line driver
 - Twisted pair: Ethernet, ISDN, ADSL, HPNA
 - Coax

ΟΤΑ

- Transconductance amplifier (common-source)
- Excessive power dissipation
- Only appropriate for modest loads and multi-stage amplifiers

$$A_{v} = g_{m}R_{L} = \frac{2I_{D}}{V^{*}}R_{L}$$

Source Follower

- Impractical for $V_{DD} < 5V$
- Push-pull follower
 - Class (A)B
 - Cross-over distortion
 - Quiescent current control

Class (A)B Common-Source

- Essentially inverter
- Very nonlinear
 - Need feedback
 - Local (error amplifiers)
 - Global
- Biasing
 - Dynamic
 - Floating voltage source

Floating Voltage Source

- D. M. Monticelli, "A quad CMOS single-supply op amp with rail-to-rail output swing," *IEEE Journal of Solid-State Circuits,* vol. 21, pp. 1026 1034, December 1986. *Original idea.*
- R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huijsing, "A compact powerefficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries," *IEEE Journal of Solid-State Circuits,* vol. 29, pp. 1505 - 1513, December 1994. *A CMOS realization.*
- K. de Langen and J. H. Huijsing, "Compact low-voltage power-efficient operational amplifier cells for VLSI," *IEEE Journal of Solid-State Circuits*, vol. 33, pp. 1482 - 1496, October 1998. *Alternative implementation of floating voltage source for low V_{DD} operation.*
- J. N. Babanezhad, "A low-output-impedance fully differential op amp with large output swing and continuous-time common-mode feedback," IEEE Journal of Solid-State Circuits, vol. 26, pp. 1825 - 1833, December 1991. *Combination of CS & CD class AB output stages.*

Test Setup

V_{gs1}, V_{gs2}

I_{D3}, I_{D4}

$I_{D1}, I_{D2} (V_{out} = 0V)$

$I_{D1}, I_{D2} (V_{out} = 1.3V)$

$g_{m1}, g_{m2} (V_{out} = 0V)$

g_{m1}, g_{m2} ($V_{out} = 1.3V$)

Feedback

Local

NEGATIVE-HALF ERROR AMPLIFIER

K. E. Brehmer and J. B. Wieser, "Large swing CMOS power amplifier," *IEEE Journal of Solid-State Circuits,* vol. 18, pp. 624 - 629, December 1983.

VIN+ \circ + A1 + A2 + A3 + C4

J. H. Huijsing and D. Linebarger, "Low-voltage operational amplifier with rail-to-rail input and output ranges," *IEEE Journal of Solid-State Circuits,* vol. 20, pp. 1144 - 1150, December 1985.

Using Helper Amps

- Lower output resistance, reject distortion
- Introduce offset

Offset Error

• Amplifier offset limits gain A

Hybrid Architecture

- Use followers and CS output stage together in parallel. M11/M12 only active for high swing.
- Since M11/M12 class B, can increase gain A

Nested Miller Feedback

- Nonlinearities are attenuated by loop-gain with all loops (compensation) opened → multistage amps have an advantage in the mid-band over single-stage with same dc gain
- Some implementations combine local with nested Miller feedback
- Ref: S. Pernici, G. Nicollini, and R. Castello, "A CMOS low-distortion fully differential power amplifier with double nested Miller compensation," *IEEE Journal of Solid-State Circuits,* vol. 28, pp. 758 763, July 1993.

Implementation Example

Nested Miller Amplifier

 $v_{1} \cdot (s \cdot C_{m1}) - g_{m1} \cdot v_{1} - v_{0} \cdot s \cdot C_{m1} = 0$ $v_{2} \cdot (s \cdot C_{m2}) - g_{m2} \cdot v_{1} - v_{0} \cdot s \cdot C_{m2} = 0$ Assumptions: $C_{1} << C_{m1}, \quad C_{2} << C_{m2}$ $g_{m1}R_{1} >> 1, \quad g_{m2}R_{2} >> 1, \quad g_{m3}R_{L} >> 1$

$$v_{0} \cdot (s \cdot C_{L} + s \cdot C_{m1} + s \cdot C_{m2}) + g_{m3} \cdot v_{2} - s \cdot C_{m1} \cdot v_{1} - s \cdot C_{m2} \cdot v_{2} = 0$$

Nested Miller OTA Analysis

$$a(s) = \frac{v_{0}}{v_{1}} = -\frac{g_{m1}}{s \cdot C_{m1}} \frac{1 - s \cdot \frac{C_{m2}}{g_{m3}} - s^{2} \cdot \frac{C_{m1} \cdot C_{m2}}{g_{m2} \cdot g_{m3}}}{1 + s \cdot C_{m2} \cdot \left(\frac{1}{g_{m2}} - \frac{1}{g_{m3}}\right) + s^{2} \cdot \frac{C_{L} \cdot C_{m2}}{g_{m2} \cdot g_{m3}}}{g_{m2} \cdot g_{m3}}$$

Dominant pole approximation:

$$D(s) = \left(1 - \frac{s}{p_2}\right) \left(1 - \frac{s}{p_2}\right)$$

$$\approx 1 - \frac{s}{p_2} + \frac{s^2}{p_2 p_3} = 1 + a_1 s + a_2 s^2$$

for $|p_3| >> |p_2|$ (p_2 is dominant pole)
 $p_2 \approx -\frac{1}{a_1}$, $p_3 \approx -\frac{a_1}{a_2}$

$$p_1 = 0$$

$$p_2 = -\frac{1}{C_{m2}} \cdot \frac{g_{m2} \cdot g_{m3}}{g_{m3} - g_{m2}} = -\frac{g_{m3}}{C_{m2}}$$

$$p_3 = -C_{m2} \cdot \frac{g_{m3} - g_{m2}}{g_{m2} \cdot g_{m3}} \cdot \frac{g_{m2} \cdot g_{m3}}{C_{L} \cdot C_{m2}} = -\frac{g_{m3} - g_{m2}}{C_{L}} = -\frac{g_{m3}}{C_{L}}$$

Assumptions: $|p_3| \gg |p_2|$ and $|p_2| \gg \omega_u$

Note: for larger parasitics, p2, p3 can be complex. Faster?

Feedforward Zeros

$$1 - s \cdot \frac{C_{m2}}{g_{m3}} - s^2 \cdot \frac{C_{m1} \cdot C_{m2}}{g_{m2} \cdot g_{m3}} = 0$$

$$z_1 = -\frac{1}{2} \cdot \frac{g_{m2}}{C_{m1}} \cdot \left(1 + \sqrt{1 + 4 \cdot \frac{C_{m1} \cdot g_{m3}}{C_{m2} \cdot g_{m2}}}\right) < 0$$
 LHP

$$z_2 = -\frac{1}{2} \cdot \frac{g_{m2}}{C_{m1}} \cdot \left(1 - \sqrt{1 + 4 \cdot \frac{C_{m1} \cdot g_{m3}}{C_{m2} \cdot g_{m2}}}\right) > 0$$

RHP, potential problem

Design Example

given:

	$C_L := 100 pF$	$f_u := 10 MHz$	$\boldsymbol{\omega}_{\mathbf{u}} \coloneqq 2 \cdot \boldsymbol{\pi} \cdot \mathbf{f}_{\mathbf{u}}$		
	$ p_3 = K_3 \cdot \omega_u$	K3 := 10		additional constrain	al constraint.
	$ \mathbf{p}_2 = \mathbf{K}_2 \cdot \boldsymbol{\omega}_u$	K ₂ := 3			
design:					
	$g_{m3} := K_3 \cdot C_L \cdot \omega_u$				$g_{m3} = 62.832 mS$
	$\omega_{T3} := 2 \cdot \pi \cdot 1 GHz$	$C_2 := \frac{g_{m3}}{\omega_{T3}}$	$C_2 = 10 pF$		
	$C_{m2} \coloneqq 3 \cdot C_2$	10	$C_{m2} = 30 pF$		
	$g_{m2} := K_2 \cdot C_{m2} \cdot \omega_u$				$g_{m2} = 5.655 \mathrm{mS}$
	$\omega_{\text{T2}} := 2 \cdot \pi \cdot 1.5 \text{GHz}$	$C_1 := \frac{g_{m2}}{\omega_{T2}}$	$C_1 = 0.6 \mathrm{pF}$		
	$C_{m1} := 3 \cdot C_1$		$C_{m1} = 1.8 \mathrm{pF}$		
	$g_{m1} \coloneqq C_{m1} \cdot \omega_u$				$g_{m1} = 0.113 mS$
	$z_1 := -\frac{1}{2} \cdot \frac{g_{m2}}{c_{m1}} \cdot \left(1 + \sqrt{1 - 1}\right)$	$+4 \cdot \frac{C_{m1} \cdot g_{m3}}{C_{m2} \cdot g_{m2}}$	$\frac{z_1}{2 \cdot \pi} = -728.714 \mathrm{MHz}$		$\frac{z_1}{\omega_u} = -72.871$
	$z_2 := -\frac{1}{2} \cdot \frac{g_{m2}}{C_{m1}} \cdot \left(1 - \sqrt{1 + 1}\right)$	$-4 \cdot \frac{C_{m1} \cdot g_{m3}}{C_{m2} \cdot g_{m2}}$	$\frac{z_2}{2 \cdot \pi} = 228.714 \mathrm{MHz}$		$\frac{z_2}{\omega_u} = 22.871$

EECS 240 Topic 14: Output Stages

More Conservative Choices

given:

$C_L := 100 pF$	$f_u := 10 MHz$	$\omega_{\mathbf{u}} \coloneqq 2 \cdot \pi \cdot \mathbf{f}_{\mathbf{u}}$
$ p_3 = K_3 \cdot \omega_u$	K ₃ := 12	
$ \mathbf{p}_2 = \mathbf{K}_2 \cdot \boldsymbol{\omega}_u$	K ₂ := 4	

design:

 $g_{m3} := K_3 \cdot C_L \cdot \omega_{m}$ $g_{m3} = 75.398 \,\mathrm{mS}$ $C_2 := \frac{g_{m3}}{2}$ $C_2 = 12 \, pF$ $\omega_{T3} := 2 \cdot \pi \cdot 1 \text{GHz}$ $C_{m2} := 6 \cdot C_2$ $C_{m2} = 72 \, pF$ $g_{m2} := K_2 \cdot C_{m2} \cdot \omega_{m2}$ $g_{m2} = 18.096 \,\mathrm{mS}$ $C_1 := \frac{g_{m2}}{\dots}$ $\omega_{T2} := 2 \cdot \pi \cdot 1.5 \text{GHz}$ $C_1 = 1.92 \, pF$ $C_{m1} := 8 \cdot C_1$ $C_{m1} = 15.36 pF$ $g_{m1} := C_{m1} \cdot \omega_u$ $g_{m1} = 0.113 \, mS$ $z_1 := -\frac{1}{2} \cdot \frac{g_{m2}}{C_{m1}} \cdot \left(1 + \sqrt{1 + 4 \cdot \frac{C_{m1} \cdot g_{m3}}{C_{m2} \cdot g_{m2}}}\right)$ $\frac{z_1}{2 \cdot \pi} = -293.848 \,\mathrm{MHz}$ $\frac{z_1}{\omega_u} = -29.385$ $z_2 := -\frac{1}{2} \cdot \frac{g_{m2}}{C_{m1}} \cdot \left(1 - \sqrt{1 + 4 \cdot \frac{C_{m1} \cdot g_{m3}}{C_{m2} \cdot g_{m2}}}\right)$ $\frac{z_2}{2 \cdot \pi} = 106.348 \,\mathrm{MHz}$ $\frac{z_2}{--} = 10.635$ ω_{u}

EECS 240 Topic 14: Output Stages