

Analog Integrated Circuits nalog Integrated Circuits

Lecture 7: Current Sources Lecture 7: Current Sources

Ali M. Niknejad and Bernhard E. Boser © 2006

Department of Electrical Engineering and Computer Sciences

Bias Current Sources Bias Current Sources

- Applications
- Design objectives
	- –Output resistance (& capacitance)
	- –Voltage range (V_{min})
	- –Accuracy
	- Noise
- Cascoding
- High-Swing Biasing

Current Mirror Current Mirror

- \bullet Bias
- •Noise
- \bullet Cascoding

$$
\overline{i_{on}^2} = \overline{i_{d1}^2} + M^2 \overline{i_{d2}^2}
$$

= $4k_B T \gamma (g_{m1} + M^2 g_{m2}) \Delta f$
= $4k_B T \gamma g_{m1} (1 + M) \Delta f$
= $4k_B T \frac{1}{R_N} \Delta f$

$$
R_N = \frac{1}{g_{m1}} \frac{\gamma^{-1}}{1 + M}
$$

= $\frac{r_o}{a_{v0}} \frac{\gamma^{-1}}{1 + M} < R_o = r_o$

v

- • $M2$ (and I_{ref} !) can add noise
	- Choose small M (power penalty), or
	- Filter at gate of M1
- \bullet Current source FOMs
	- –Output resistance R_o
	- –Noise resistance R_N
	- – $-$ Active sources boost $\mathbf{R}_{_{\boldsymbol{0}}},$ not $\mathbf{R}_{_{\mathbf{N}}}$

EECS 240 Lecture 7: Current Sources **CECS 240 Lecture 7: Current Sources CECS** 2006 A. M. Niknejad and B. Boser 4

o o

Vmin versus Noise versus Noise

$$
V_{\min} = k \times V^* \qquad \text{typ.} \quad k = 1...2
$$

$$
R_N = \frac{1}{g_{m1}} \frac{\gamma^{-1}}{1 + M}
$$

$$
= \frac{V_{\min}}{2KI_D} \frac{\gamma^{-1}}{1 + M}
$$

- Voltage required for large Ro (saturation): $\bm{\mathsf{V}}_{\sf min}$ ~ $\bm{\mathsf{V}}^{\star}$ (based on intuition from square-law model)
- \bullet -Minimizing noise (for given I_D): \rightarrow large $\mathsf{R}_{_{\rm N}}$ → large V_{min} (k >> 1)
- At odds with signal swing (to maximize the dynamic range)

Bipolar Bipolar 's, GaAs, …

a)
$$
g_m R_E = 0
$$
 $\overline{i_{on}^2} = 2k_B T g_m \Delta f$
 $R_N = \frac{2}{g_m} = \frac{2V_t}{I_C}$ set by I_C

b)
$$
g_m R_E >> 1
$$
 $\overline{i_{on}^2} = 4k_B T \frac{1}{R_E} \Delta f$

 $R_{\rm M, MOS} = \frac{V_{\rm T}}{V_{\rm T}}$

=

,

$$
R_N = R_E = \frac{V_{\text{min}}}{I_C} \frac{V_{\text{min}} - V_{ce}^{sat}}{V_{\text{min}}}
$$

IK

 $\int_{\min}^{\infty} \gamma^{-1}$

γ

−

compare $R_{N,MOS} = \frac{m}{I_0} \frac{N}{2}$

$$
R_{E} \leq \frac{1}{\frac{1}{100}} \sum_{i=1}^{n} C_{big} \leq R_{E}
$$

- •BJT and R_E contribute noise
- \bullet Increasing R_E lowers overall noise
- • BJT and MOS exhibit essentially same noise / V_{min} tradeoff
- • Lowest possible noise source is a resistor (and large V_{min} , V_{DD})

D

Output Resistance Output Resistance

$R_{out} = f(k)$

High -Swing Cascode Biasing Swing Cascode Biasing

- Need circuit for generating V_{bias2}
- Goal: Set V_{bias} such that $\rm V_{DS1}\approx kV^*$
	- k > 1 (typical: 1 … 2)
	- –Important for high R_{out}
	- –No penalty for moderate $\rm R_{out}$
- Design for insensitivity to
	- –Process variations (μ , C_{ox}, V_{TH}, γ , ...)
	- Reference current I_{ref}

High -Swing Bias 1 Swing Bias 1

- • M 4 quarter size or less
	- $-$ M=1/5 for high R_{out}
	- Note: M ≠k
- • M_5 sets $V_{DS3} = V_{DS1}$: improves matching
- •Sensitive to body-effect
- $L_{\text{current-source}} = L_{\text{cascode}}$
- •Simple

•

High-Swing Bias 2

- • M5 … M10 replace quarter size device
- •All devices same size
- • Less sensitive to bodyeffect

• $L_{\text{current-source}}$ $= L_{\text{cascode}}$

High -Swing Bias 3 Swing Bias 3

- • M_5 in triode & smaller
- •All other devices same size
- \bullet Sensitive to body-effect

•
$$
L_{\text{current-source}} = L_{\text{cascode}}
$$

O bjective :

$$
V_{DS5} = R \times V_{d1}^{sat}
$$

Square -law :

$$
I_{D5} = \mu C_{ox} m_5 \frac{W}{L} (V_{GSS} - V_{TH5} - \frac{V_{DSS}}{2}) V_{DSS}
$$

\n
$$
I_{D6} = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GSS} - V_{TH6})^2
$$

\nwith
\n
$$
I_{D5} = I_{D6}
$$

\n
$$
V_{GSS} = V_{GSS} + V_{DSS}
$$

\n
$$
V_{GSS} = V_{TH6} + V_{d6}^{sat}
$$
 with
$$
V_{d6}^{sat} = V_{d1}^{sat}
$$

substitute

$$
\left(V_{d6}^{sat}\right)^{2} = m_{5}\left(V_{DSS} + 2V_{d6}^{sat} + 2\Delta V_{TH}\right)V_{DSS}
$$
 solve :

$$
V_{d6}^{sat} = m_{5}V_{DSS}\left(1 + \sqrt{1 + \frac{1}{m_{5}} + \frac{2}{m_{5}}\frac{\Delta V_{TH}}{V_{DSS}}}\right)
$$

$$
R = \frac{1}{m_{5}\left(1 + \sqrt{1 + \frac{1}{m_{5}} + \frac{2}{m_{5}}\frac{\Delta V_{TH}}{V_{DSS}}}\right)}
$$

Examples:

$$
m_5 = 1/3, \ \Delta V_{TH} = 0V
$$

R = 1

$$
m_5 = 1/4
$$
, $\Delta V_{TH} = 0V$
R = 1.55

Different Device Length Different Device Length

High Swing Cascode Bias 3: DC1 C1 DC1 Current Source and Cascode have different Channel Length

DC Analysis sweep from 0 to 3 (51 steps) Device V1

High -Swing Bias 4 Swing Bias 4

• M_6 in triode

sat d $V_{DS6} = 0.3 V_{d7}^{sat} = 1.2 V_{d1}^{s0}$

- •Insensitive to body effect
- •Current source and cascode device length may differ
- •Need 3 reference sources (increased power dissipation)
- •*Large device ratios*

Ref: Carlos A. Laber, Chowdhury F. Rahim, Stephen F. Dreyer, Gregory T. Uehara, Peter Kwok, Paul R. Gray; *Design considerations for a high-performance 3-µm CMOS analog standard-cell library*, IEEE Journal of Solid-State Circuits, vol. 22, pp. 181 - 189, April 1987.

Gain Boosting Gain Boosting

- Use feedback to further increase R_{out}
	- –No increase of V_{min} (unlike double cascode)
- Local feedback \rightarrow potential instability
- Beware of doublets (slow settling)
- Noise enhancement

Gain Boosting Analysis Gain Boosting Analysis

Note: C1 & C2 would not be present in an actual circuit (or smaller). They are added here to separate pole frequencies.

- $Z_{\text{total}} = Z_{\text{boost}}$ // Z_{CL}
- •Doublets \rightarrow slow settling
- Booster bandwidth tradeoff:
	- push doubled above closedloop bandwidth
	- ensure stability (nondominant pole at source of $\mathrm{M}_2)$
- Ref: Klaas Bult, Govert J. G. M. Geelen; *A fast-settling CMOS Op amp for SC circuits with 90-dB DC gain*, IEEE Journal of Solid-State Circuits, vol. 25, pp. 1379 - 1384, December 1990.

Noise Analysis Noise Analysis

Noise Summary Noise Summary

Noise Detail Noise Detail

Booster amplifier and cascode contribute noise at high frequency.

Actual boosters have more transistors \rightarrow additional

Some noise might be filtered out by sampling

Cascode Noise Cascode Noise

Noise from cascode often insignificant.

Can contribute substantially at high frequency with lots of (capacitive) degeneration at the source of the cascode transistor (poor layout).

If it works, do it again! If it works, do it again!

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 12, DECEMBER 2004

Fig. 8. Nested CMOS gain-boosting technique.

2144

- • Since in advanced scaled CMOS gmro is small, we can use nested gain boosting for higher output impedance.
- •Watch out for pole-zero doublets!

CHIU et al.: A 14-b 12-MS/s CMOS PIPELINE ADC WITH OVER 100-dB SFDR

Matching Matching

- Systematic mismatch
	- $\Delta {\rm V}_{\rm DS}$
	- source resistance
	- –gradients
- Random mismatch
	- ∆ (W/L)
	- $\Delta {\rm V}_{\rm TH}$

Random Mismatch Random Mismatch

 \bullet Model:(we need an equation with W/L in it \ldots resort to square-law)

$$
I_{D1} = \frac{1}{2} \mu C_{ox} \left(\frac{W}{L}\right)_{1} \left(V_{GS} - V_{TH1}\right)^{2}
$$

$$
I_{D2} = \frac{1}{2} \mu C_{ox} \left(\frac{W}{L}\right)_{2} \left(V_{GS} - V_{TH2}\right)^{2}
$$

 \bullet Mismatch: ΔI_D , $\Delta\text{W/L}$), ΔV_TH

$$
\Delta \left(\frac{W}{L}\right) = \left(\frac{W}{L}\right)_1 - \left(\frac{W}{L}\right)_2 \qquad \qquad \left(\frac{W}{L}\right) = 0.5 \left[\left(\frac{W}{L}\right)_1 + \left(\frac{W}{L}\right)_2\right]
$$

 $I_D = 0.5(I_{D1} + I_{D2})$

$$
\Delta V_{\text{TH}} = V_{\text{TH1}} - V_{\text{TH2}}
$$

 $\Delta I_{D} = I_{D1} - I_{D2}$

$$
V_{\text{TH}} = 0.5(V_{\text{TH1}} + V_{\text{TH2}})
$$

 $\overline{}$ \rfloor

 \bullet Substitute:

$$
\frac{\Delta I_D}{I_D} = \frac{\Delta \left(\frac{W}{L}\right)}{\left(\frac{W}{L}\right)} - \frac{2\Delta V_{TH}}{V_{GS} - V_{TH}}
$$

 \bullet \Rightarrow choose large V_{GS}-V_{TH} (V^{*})

Mismatch Example Mismatch Example

$$
\sigma_{\Delta\left(\frac{W}{L}\right)}/\frac{10}{\left(\frac{W}{L}\right)}
$$
\n
$$
\sigma_{\Delta V_{TH}} = 3 \text{mV}
$$
\n
$$
V_{GS} - V_{TH} = 300 \text{mV}
$$

• Represent mismatch as random quantities

• Variances (squares!) add … like noise

$$
\sigma_{\frac{\Delta I_D}{I_D}}^2 = \sigma_{\Delta \left(\frac{W}{L}\right) / \left(\frac{W}{L}\right)}^2 + \frac{4\sigma_{\Delta V_{TH}}^2}{\left(V_{GS} - V_{TH}\right)^2}
$$

= $(0.01)^2 + \left(\frac{2 \times 3}{300}\right)^2 = (100 + 100) \times 10^{-6}$
= $(1.4\%)^2$

 \bullet Use large V* (or degeneration) for good current mirror matching

Yield

- • $Yield = fraction$
- E.g. need $\pm 2.8\%$ matching σ = 1.4%, $k = 2.8 / 1.4 = 2$

$$
yield = 0.954 = \frac{95.4\%}{}
$$

• Typical design goal: $± 3σ ("6σ"),$ i.e. k=3