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Bias Current SourcesBias Current Sources

• Applications
• Design objectives

– Output resistance (& capacitance)
– Voltage range (Vmin)
– Accuracy
– Noise

• Cascoding
• High-Swing Biasing
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Current MirrorCurrent Mirror
• Bias
• Noise
• Cascoding
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NoiseNoise

• M2 (and Iref!) can add noise
– Choose small M (power penalty), or
– Filter at gate of M1

• Current source FOMs
– Output resistance Ro
– Noise resistance RN
– Active sources boost Ro, not RN
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VVminmin versus Noiseversus Noise
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• Voltage required for large Ro 
(saturation): Vmin ~ V* (based 
on intuition from square-law 
model)

• Minimizing noise (for given ID):
large RN
large Vmin (k >> 1)

• At odds with signal swing
(to maximize the dynamic 
range)
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BipolarBipolar’’ss, , GaAsGaAs, , ……

• BJT and RE contribute noise
• Increasing RE lowers overall noise
• BJT and MOS exhibit essentially same 

noise / Vmin tradeoff
• Lowest possible noise source is a 

resistor (and large Vmin, VDD)
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CascodingCascoding



EECS 240 Lecture 7:  Current Sources © 2006   A. M. Niknejad and B. Boser   8

Output ResistanceOutput Resistance
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RRout out = f(k)= f(k)

*
11 kVVDS =

How choose k? Issues:

• Swing versus Ro
• Large k useful only for large 

Vmin simultaneously
• Note: small or no penalty for 

large k and small Vmin
• typically choose k>1
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HighHigh--Swing Cascode BiasingSwing Cascode Biasing
• Need circuit for generating Vbias2

• Goal: Set Vbias such that VDS1 ≈ kV*
– k > 1 (typical: 1 … 2)
– Important for high Rout

– No penalty for moderate Rout

• Design for insensitivity to 
– Process variations (µ, Cox, VTH, γ, …)
– Reference current Iref
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HighHigh--Swing Bias 1Swing Bias 1
• M4 quarter size or less

– M=1/5 for high Rout
– Note: M ≠ k

• M5 sets VDS3 = VDS1:
improves matching

• Sensitive to body-effect

• Lcurrent-source = Lcascode

• Simple
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RRoutout
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HighHigh--Swing Bias 2Swing Bias 2
• M5 … M10 replace 

quarter size device

• All devices same size 

• Less sensitive to body-
effect

• Lcurrent-source = Lcascode
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HighHigh--Swing Bias 3Swing Bias 3

• M5 in triode & smaller

• All other devices same size 

• Sensitive to body-effect

• Lcurrent-source = Lcascode
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Device SizingDevice Sizing
Examples:

m5 = 1/3,  ∆VTH=0V
R = 1

m5 = 1/4,  ∆VTH=0V
R = 1.55 
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Different Device LengthDifferent Device Length
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HighHigh--Swing Bias 4Swing Bias 4

• M6 in triode
• Insensitive to body effect
• Current source and cascode device length may differ
• Need 3 reference sources (increased power dissipation)
• Large device ratios
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Ref: Carlos A. Laber, Chowdhury F. Rahim, Stephen F. Dreyer, Gregory T. Uehara, Peter Kwok, Paul R. Gray; Design considerations for a 
high-performance 3-µm CMOS analog standard-cell library, IEEE Journal of Solid-State Circuits, vol. 22, pp. 181 - 189, April 1987.
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Gain BoostingGain Boosting
• Use feedback to further increase Rout

– No increase of Vmin
(unlike double cascode)

• Local feedback potential instability

• Beware of doublets (slow settling)

• Noise enhancement
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Gain Boosting AnalysisGain Boosting Analysis

Note: C1 & C2 would not be present in an actual circuit (or smaller). They are added here to separate pole frequencies. 
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ZZoutout

• Ztotal = Zboost // ZCL

• Doublets slow settling

• Booster bandwidth tradeoff:

- push doubled above closed-
loop bandwidth

- ensure stability 
(nondominant pole at 
source of M2)

Ref: Klaas Bult, Govert J. G. M. Geelen; A fast-settling CMOS Op amp for SC circuits with 90-dB DC gain, IEEE 
Journal of Solid-State Circuits, vol. 25, pp. 1379 - 1384, December 1990. 
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Noise AnalysisNoise Analysis
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Noise SummaryNoise Summary
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Noise DetailNoise Detail

Booster amplifier and 
cascode contribute noise 
at high frequency.

Actual boosters have more 
transistors additional 
noise.

Some noise might be 
filtered out by sampling 
switch.
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Cascode NoiseCascode Noise

Noise from cascode often 
insignificant.

Can contribute substantially 
at high frequency with lots of 
(capacitive) degeneration at 
the source of the cascode 
transistor (poor layout).
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If it works, do it again!If it works, do it again!

• Since in advanced scaled CMOS gmro is small, we can use 
nested gain boosting for higher output impedance.  

• Watch out for pole-zero doublets!
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MatchingMatching

• Systematic mismatch
– ∆VDS
– source resistance
– gradients

• Random mismatch
– ∆ (W/L)
– ∆VTH
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Random MismatchRandom Mismatch
• Model:

(we need an equation
with W/L in it …
resort to square-law)

• Mismatch:  
∆ID, ∆(W/L), ∆VTH

• Substitute:

• choose large VGS-VTH (V*)
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Mismatch ExampleMismatch Example
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• Represent mismatch as random 

quantities

• Variances (squares!) add … like 
noise

• Use large V* (or degeneration) 
for good current mirror 
matching
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YieldYield
• Yield = fraction of good dies

• E.g. need ±2.8% matching
σ = 1.4%, 
k = 2.8 / 1.4 = 2

yield = 0.954 = 95.4%

• Typical design goal:
± 3σ (“6σ”),    i.e.  k=3
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