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Input Equivalent NoiseInput Equivalent Noise

• Two-port representation
• Fictitious noise sources
• Effect of source resistance
• Correlation
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Equivalent Noise GeneratorsEquivalent Noise Generators

• Any noisy two port can be replaced with a 
noiseless two-port and equivalent input noise 
sources

• In general, these noise sources are correlated. For 
now let’s neglect the correlation.
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Finding the Equivalent GeneratorsFinding the Equivalent Generators

• The equivalent sources are found by opening and shorting the input 
and equating the noise.

• For a shorted input, the input current flows through the short and the 
output is due only to the input noise.  

• For an open input, the dangling voltage does not contribute to the 
output noise.
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Role of Source ResistanceRole of Source Resistance

• If Rs = 0, only the voltage noise vn is important. Likewise, if 
Rs = ∞, only the current noise in is important.

• Amplifier Selection: If Rs is large, then select an amp with 
low in (MOS). If Rs is low, pick an amp with low vn (BJT).

• For a given Rs, there is an optimal vn/in ratio.
• Alternatively, for a given amp, there is an optimal Rs.
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Total Output NoiseTotal Output Noise
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New Equivalent GeneratorNew Equivalent Generator

• We see that the total noise can be lumped into one 
equivalent voltage once Rs is known.

• Be careful!  Up to now we ignored the correlation.
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Optimum Source ImpedanceOptimum Source Impedance

• For a given two-port (amplifier), what’s the 
optimum source impedance?  Find the total 
output noise and find the minima for Rs to 
find Ropt.
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Correlated Noise SourcesCorrelated Noise Sources
• Let’s partition the input noise current into two 

components, a component correlated (“parallel”) 
to the noise voltage and a component uncorrelated 
(“perpendicular”) of the noise voltage
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Equivalent Noise Voltage (Equivalent Noise Voltage (corcor))

• Since the above expression is the sum of 
two uncorrelated noise voltages, we have

• Now we can continue as before to find
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Noise and FeedbackNoise and Feedback
• Ideal feedback:

– No increase of input referred noise
– No decrease of SNR at output

• Practical feedback: increased noise
– Noise from feedback network
– Noise gain from elements outside feedback loop

• System level: feedback can mitigate noise problems
– E.g. under-damped accelerometer

Ref: M. Lemkin and B. E. Boser, “A Three-Axis Micromachined Accelerometer with a CMOS Position-Sense 
Interface and Digital Offset-Trim Electronics,” IEEE J. Solid-State Circuits, vol. SC-34, pp. 456-468, April 
1999.
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Ideal FeedbackIdeal Feedback

Order of summation 
irrelevant:

Circuits are identical

Σ -a

f

Vi Vo

vn

Σ -a

f

Vi Vo

vn



EECS 240 Lecture 5:  Noise © 2006   A. M. Niknejad and B. Boser   13

Ideal Feedback and NoiseIdeal Feedback and Noise

• It’s clear that the ideal feedback network 
does not alter the noise of the system.  Real 
feedback elements, though, have noise.
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Example:  Shunt FeedbackExample:  Shunt Feedback
• Shunt feedback samples the output 

voltage and subtracts from the 
input current.  It’s thus most 
effective in a trans-resistance 
amplifier configuration.

• The action of the feedback is to 
lower the input and output 
impedance.  In a typical 
implementation, the resistor RF
adds thermal noise to the input.
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Shunt FB AnalysisShunt FB Analysis

• To find the equiv input noise voltage, we short the 
input (and thus the noise current).  

• The output noise is clearly given by the two-port 
voltage gain squared.  Even though we don’t think 
of this as a voltage amplifier, we can still use the 
trans-resistance gain since iin = vin/Zin
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Shunt FB Equiv Voltage NoiseShunt FB Equiv Voltage Noise

• The voltage gain does not change with 
feedback since we are voltage driving the 
circuit.

• Since the input current is independent of the 
feedback noise current, it does not alter the 
output noise.
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Shunt FB Equiv Noise CurrentShunt FB Equiv Noise Current

• If we leave the input terminal open-circuited, then 
the input voltage noise for the equiv circuit is 
disabled.  For the real circuit, though, the input 
noise is active through RF.
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Shunt Noise CurrentShunt Noise Current
• Suppose the closed-loop gain of the circuit is 

given by Zcl ≈ RF.  Then we have

• For the full circuit, let α represent the input 
current division between the two-port and the 
feedback network.  If the two-port output 
imepdance is small, we have α =Zin/(Zin + RF) ≈ 1
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Shunt Current (cont)Shunt Current (cont)

• The first two terms are pretty obvious.  The 
last term requires a small calculation as 
shown below



EECS 240 Lecture 5:  Noise © 2006   A. M. Niknejad and B. Boser   20

SeriesSeries--Shunt FeedbackShunt Feedback

• In a feedback voltage amplifier, open-
circuit the input to find the equivalent input 
noise.  It’s clear from the above figure that
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SeriesSeries--Shunt Shorted InputShunt Shorted Input

• Assuming high/low input/output impedance, the 
current in develops a voltage across RE||RF.

• The noise voltages due to RE and RF generate an 
input that is readily calculated by voltage division.
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SeriesSeries--Shunt Noise VoltageShunt Noise Voltage

• We compute the transfer function from each 
noise source to the output using 
superposition.  Let Acl represent the closed-
loop voltage gain

• The above can be simplified to 
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SeriesSeries--Shunt Voltage (cont)Shunt Voltage (cont)
• Since the same closed-loop gain is used for the 

equivalent noise generator, we have

• If the loop gain and closed-loop gain is large, we 
have

• Which means that the noise of RE dominates.
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Feedback SummaryFeedback Summary

• For quick approximations, simply consider the 
loading effect of the feedback network on the 
input and associate a noise to this element.  

• For shunt-shunt feedback, the loading at the input 
is RF.  Since the input is a current, represent this as 
an input noise current.

• For series-shunt feedback, the loading is RF||RE
(short the output).  Since the input is a voltage, we 
associate a noise voltage with this element.
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Example:  NonExample:  Non--Inverting AmpInverting Amp
Example:

• Decreasing Ro reduces noise but 
increases feedback current

a = inf
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Example: Inverting AmplifierExample: Inverting Amplifier
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Example: MOS S&HExample: MOS S&H
• Sampling noise:

• Noise bandwidth:
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Sampling NoiseSampling Noise

• “kT/C” noise
• Application: ADC, SC circuits, …
• Aliasing
• Variance of noise sample
• Spectral density of sampled noise
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SPICE VerificationSPICE Verification
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Useful IntegralsUseful Integrals
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Example 4: CS AmplifierExample 4: CS Amplifier
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SPICE CircuitSPICE Circuit
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SPICE ResultSPICE Result
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SignalSignal--ToTo--Noise RatioNoise Ratio
• SNR

• Signal Power
sinusoidal source

• Noise Power
assuming thermal noise dominates

• SNR = f(C)
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dB versus BitsdB versus Bits
• Quantization “noise”

– Quantizer step size:
– Box-car pdf
– Variance:

• SNR of N-Bit sinusoidal signal
– Signal power

– SNR

– 6.02 dB per Bit
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SNR versus PowerSNR versus Power
• 1 Bit   6dB   4x SNR
• 4x SNR      4x  C
• Circuit bandwidth   ~gm/C   4x  gm
• Keeping V* constant  4x ID,  4x W

• Thermal noise limited circuit:
Each additional Bit QUADRUPLES power dissipation.
E.g.  15 Bit noise-limited ADC dissipates 100mW

16 Bit redesign dissipates 400mW !

• Overdesign is very costly. We need design procedures that get us very 
close to the specifications.
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Analog Circuit Dynamic RangeAnalog Circuit Dynamic Range
• The biggest signal we can ever expect at the output of a circuit is 

limited by the supply voltage, VDD. Hence (for sinusoids)

• The noise is

• So the dynamic range in dB is:
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Analog Circuit Dynamic RangeAnalog Circuit Dynamic Range
• For integrated circuits built in modern CMOS processes, VDD < 3V and C 

< 1nF  (nf = 1)

– DR < 110dB   (18 Bits)

• For PC board circuits built with “old-fashioned” 30V opamps and discrete 
capacitors of < 100nF

– DR < 140dB   (23 Bits)
– A 30dB (5 Bit) advantage!

• Note: oversampling ADCs break this barrier (cost: speed penalty)
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““BigBig”” Noise ExampleNoise Example

• Cascoded common-source stage: 
what are the noise contributions 
from M1, M2?

• Simplified model for conclusive 
results:

– Lump parasitic capacitors
– Feedback sets gain, 

neglect ro
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Example (cont.)Example (cont.)
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Example (cont.)Example (cont.)
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Example (cont.)Example (cont.)
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Spectral noise density at amplifier output:

• Noise from M2:
• Circular current at low frequency does 

not reach amplifier output
• At high frequency Cx short

• Cascode contributes little noise at low 
frequency

• At high frequency the noise contribution 
can be significant
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Example (cont.)Example (cont.)
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Total noise at amplifier output:

• Total noise depends only on C!
• M1 always contributes noise
• Significant noise from M2 for “large” Cx

make Cx small (compared to CLeff)



EECS 240 Lecture 5:  Noise © 2006   A. M. Niknejad and B. Boser   44

Design ExampleDesign Example
• Track & Hold amplifier for 16-Bit ADC (B=16)
• fs = 100MHz ωu ~ 2π fsN

N = ln(2B)      … based on settling, see later
• Amplifier based on cascoded common-source, Av = -1
• Choose

– L = 0.35µm
– M1 and M2 same size (not necessarily ideal)
– CF = CS = CGS (reasonable tradeoff)

F = 1/3
– Maximum signal amplitude Vs (peak-to-peak)
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Design EquationsDesign Equations

( )

( )

1

3
2

1

B

2

2

2*

2lnN                 2

1

22
1

2

m

D

oxGS

Leff

m

su

Leff

GSx

Leff

s

B

g
IV

WLCC

C
gF

Nf

C
CC

FC
kT

V

DR

=

=

=

≅=










 ≈
+









=

=

πω
solve

F
CNfg

V
Tk

F
C

L
sm

s

rB
B

L

π2

28

1

2

2

≅

×
≅



EECS 240 Lecture 5:  Noise © 2006   A. M. Niknejad and B. Boser   46

Design ExamplesDesign Examples
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