EECS 240 Analog Integrated Circuits

Lecture 4: Small-Signal Models for Analog Design

Ali M. Niknejad and Bernhard E. Boser © 2006

Department of Electrical Engineering and Computer Sciences

MOSFET Models for Design

- SPICE (BSIM)
 - For verification
 - Device variations
- Hand analysis
 - Square law model
 - Small-signal model
- Challenge
 - Complexity / accuracy tradeoff
 - How can we accurately design when large signal models suitable for hand analysis are off by 50% and more?

Device Variations

- Run-to-run parameter variations:
 - E.g. implant doses, layer thickness
 - Affect V_{TH} , μ , C_{ox} , R_{\Box} , ...
 - How model in SPICE?
- Nominal / slow / fast parameters
 - E.g. fast: low V_{TH}, high μ , high C_{ox}, low R_{\Box}
 - Combine with supply extremes
 - Pessimistic but numerically tractable
 → improves chances for working Silicon

Threshold Voltage V_{TH}

- Strong function of L
- Use long channel for V_{TH} matching
- Process variations
 - Run-to-run
 - How characterize?
 - Slow/nominal/fast
 - Both worst-case & optimistic

V_{TH} Design Considerations

- Approximate Values (L = $0.5\mu m$) $V_{THN} = 600mV$ $\gamma_n = 0.5 \text{ rt-V}$ $V_{THP} = -700mV$ $\gamma_p = 0.4 \text{ rt-V}$
- Back-Gate Bias

$$V_T = V_{T0} + \gamma \left(\sqrt{\psi_0 + V_{SB}} - \sqrt{\phi_0} \right) \qquad \phi_0 \approx 2\phi_F$$

e.g.
$$V_{SB} = 400 \text{mV} \rightarrow \Delta V_{THN} = 110 \text{mV}$$

- Variations:
 - Run-to-run: +/- 50mV (very process dependent)
 - Device-to-device: $\sigma = 2mV$ (L > 1µm, common-centroid)
 - Use insensitive designs
 - diff pairs, current mirrors
 - \rightarrow value of V_{TH} unimportant (if < V_{DD})

Device Parameters for Design

- Region: moderate or strong inversion / saturation
 - Most common region of operation in analog circuits
 - XTR behaves like transconductor: voltage controlled current source
- Key design parameters
 - Large signal
 - Current $I_D \rightarrow$ power dissipation
 - Minimum $V_{DS} \rightarrow$ available signal swing
 - Small signal
 - Transconductance $g_m \rightarrow$ speed / voltage gain
 - Capacitances $C_{GS}, C_{GD}, \dots \rightarrow$ speed
 - Output impedance $r_0 \rightarrow$ voltage gain

Low Frequency Model

• A Taylor series expansion of small signal current gives (neglect higher order derivatives)

$$i_{ds} = \frac{\partial I_{ds}}{\partial V_{gs}} v_{gs} + \frac{\partial I_{ds}}{\partial V_{bs}} v_{bs} + \frac{\partial I_{ds}}{\partial V_{ds}} v_{ds}$$
$$i_{ds} = g_m V_{gs} + g_{mb} V_{bs} + g_{ds} V_{ds}$$

• Square law model:

$$g_{m,triode} = \mu C_{ox} \frac{W V_{ds}}{L} \qquad g_m = \mu C_{ox} \frac{W (V_{gs} - V_T)}{L} \frac{\omega}{\alpha}$$
$$g_{ds} = \frac{1}{r_o} = \lambda I_{ds}$$

EECS 240 Lecture 2: CMOS - passive devices

Transconductance

• Using the square law model we have three equivalent forms for g_m in saturation

$$g_m = \mu C_{ox} \frac{W}{L} \sqrt{\frac{2I_{ds}}{\mu C_{ox} \frac{W}{L}}}$$

$$g_m = \sqrt{2\mu C_{ox}} \frac{W}{L} I_{ds} \propto \sqrt{I_{ds}}$$

$$g_m = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{gs} - V_T)^2 \frac{1}{\frac{1}{2} (V_{gs} - V_T)}$$

$$g_m = \frac{2I_{ds}}{V_{gs} - V_T} = \frac{2I_{ds}}{V_{dsat}}$$

EECS 240 Lecture 2: CMOS - passive devices

Weak Invesion g_m

• In weak inversion we have bipolar behavior

$$I_{ds} \approx \frac{W}{L} I_{ds,0} e^{\frac{q(V_{gs} - V_T)}{nkT}}$$
$$g_m = \frac{\partial I_{DS}}{\partial V_{GS}} = \frac{\frac{W}{L} I_{ds,0} e^{\frac{q(V_{gs} - V_T)}{nkT}}}{n\frac{kT}{q}}$$

(τ τ

 $\tau \tau$

$$g_m = \frac{I_{DS}}{n\frac{kT}{q}} \propto I_{DS}$$

EECS 240 Lecture 2: CMOS - passive devices

Transconductance

Transconductance (cont)

- The transconductance increases linearly with $V_{gs} V_T$ but only as the square root of I_{ds} . Compare this to a BJT that has transconductance proportional to current.
- In fact, we have very similar forms for g_m

$$g_m^{\mathsf{FET}} = \frac{2I_{ds}}{V_{dsat}} \qquad \qquad g_m^{\mathsf{BJT}} = \frac{I_C}{V_t}$$

- Since $V_{dsat} >> V_t$, the BJT has larger transconductance for equal current.
- Why can't we make $V_{dsat} \sim V_t$?

Subthreshold Again...

- In fact, we can make $V_{gs} V_t$ very small and operate in the sub-threshold region. Then the transconductance is the same as a BJT (except the non-ideality *n* factor).
- But as we shall see, the transistor f_T drops dramatically if we operate in this region.
 Thus we typically prefer moderate or strong inversion for high-speed applications.

μΟοχ

• Square law:

$$\mu C_{ox} = \frac{g_m^2}{2\frac{W}{L}I_L}$$

- Extracted values strong function of I_D
 - $-Low I_{D} \rightarrow$ weak inversion $-Large I_{D} \rightarrow$
 - mobility reduction
- Do not use μC_{ox} for design!

400u

300u

200u

180nm nFET

1u nFET

EECS 240 Lecture 2: CMOS - passive devices

1.5m

- A good metric for a transistor is the transconductance normalized to the DC current. Since the power dissipation is determined by and large by the DC current, we'd like to get the most "bang" for the "buck".
- From this perspective, the weak and moderate inversion region is the optimal place to operate.

Efficiency g_m/I_D

Efficiency g_m/I_D

• Let's define

$$V^* = \frac{2I_D}{g_m} \qquad \Leftrightarrow \qquad \frac{g_m}{I_D} = \frac{2}{V^*}$$

e.g. V* = 200mV
$$\rightarrow$$
 g_m/I_D = 10 V⁻¹

• Square-law devices: $V^* = V_{GS} - V_{TH} = V_{dsat}$

Square law:
$$g_m = \frac{2I_D}{V_{GS} - V_{TH}} = \frac{2I_D}{V*}$$

SPICE Charge Model

- Charge conservation
- MOSFET:
 - 4 terminals: S, G, D, B
 - 4 charges: $Q_S + Q_G + Q_D + Q_B = 0$ (3 free variables)
 - 3 independent voltages: V_{GS}, V_{DS}, V_{SB}
 - 9 derivatives: $C_{ij} = dQ_i / dV_j$, e.g. $C_{G,GS} \sim C_{GS}$
 - $C_{ij} != C_{ji}$

Ref: HSPICE manual, "Introduction to Transcapacitance", pp. 15:42, Metasoft, 1996.

Small Signal Capacitances

	Weak inversion	Strong inversion linear	Strong inversion saturation
C _{GS}	C _{ol}	$C_{GC}/2 + C_{ol}$	$2/3 C_{GC} + C_{ol}$
C _{GD}	C _{ol}	$C_{GC}/2 + C_{ol}$	C _{ol}
C _{GB}	$C_{GC} // C_{CB}$	0	0
C _{SB}	C _{jSB}	$C_{jsB} + C_{CB}/2$	$C_{jsB} + 2/3 C_{CB}$
C _{DB}	C _{jDB}	$C_{jDB} + C_{CB}/2$	C _{jDB}

$$C_{GC} = C_{ox}WL$$

$$C_{ox} = 5.3 \text{ fF}/\mu\text{m}^{2}$$

$$C_{CB} = \frac{\varepsilon_{Si}}{x_{d}}WL$$

$$C_{OlN} = 0.24 \text{ fF}/\mu\text{m}$$

$$C_{OlP} = 0.48 \text{ fF}/\mu\text{m}$$

EECS 240 Lecture 2: CMOS - passive devices

MOS Capacitance Example

subthreshold :

$$\frac{W}{L} = \frac{100}{0.5}$$

$$C_{ox} = \varepsilon_o \frac{\varepsilon_{SiO_2}}{t_{ox}} = 5.3 \frac{\text{fF}}{\mu \text{m}^2}$$

$$C_{gc} = C_{ox}WL = 265\text{fF}$$

$$C_{ol} = C_{olN}W = 24\text{fF}$$

$$C_{gs} = C_{ol} = 24 \text{fF}$$

 $C_{gd} = C_{ol} = 24 \text{fF}$

triode:

$$C_{gs} = \frac{1}{2}C_{gc} + C_{ol} = 157 \text{fF}$$

$$C_{gd} = \frac{1}{2}C_{gc} + C_{ol} = 157 \text{fF}$$

saturation:

$$C_{gs} = \frac{2}{3}C_{gc} + C_{ol} = 201 \text{fF}$$
$$C_{gd} = C_{ol} = 24 \text{fF}$$

 $PD = 2\mu m$ e.g. NMOS, W=20µm, V_{sh}=0V $C_{sb} = 29 fF$ $C_{db} = 10 fF$

W/2

M1b

1µm

Extrinsic MOS Capacitances

• Source/drain diffusion junction capacitance:

$$C_{j}(V) \cong \frac{C_{j0}}{\left(1 + \frac{V}{V_{b}}\right)^{m}} \quad \text{and} \quad C_{jsw}(V) \cong \frac{C_{jsw0}}{\left(1 + \frac{V}{V_{b}}\right)^{m}} \quad C_{jn0} = 0.85 \frac{\text{fF}}{\mu\text{m}^{2}} \quad C_{jn0} = 1.1 \frac{\text{fF}}{\mu\text{m}^{2}}$$

$$C_{jswn0} = 0.49 \frac{\text{fF}}{\mu\text{m}^{2}} \quad C_{jswn0} = 0.48 \frac{\text{fF}}{\mu\text{m}^{2}} \quad C_{jswn0} = 0.48 \frac{\text{fF}}{\mu\text{m}^{2}}$$

$$C_{bc0} = \frac{\varepsilon_{Si}\varepsilon_{0}}{x_{j0}} \quad \text{with} \quad x_{j0} = \sqrt{\frac{2\varepsilon_{Si}\varepsilon_{0}}{q_{e}N_{sub}}|\Phi_{bi}|} \quad V_{bn} = 0.51 \text{V} \quad V_{bn} = 0.93 \text{V} \quad m_{n} = 0.48$$

• <u>Example</u>: W/L = 100/0.5, $V_{SB} = V_{DB} = 0V$, $L_{diff} = 1 \mu m$

EECS 240 Lecture 2: CMOS - passive devices

High Frequency Figures of Merit

• Unity current-gain bandwidth

$$\omega_T = \frac{g_m}{C_{gs} + C_{gd}}$$

$$\omega_T = \frac{3}{2} \frac{\mu V_{dsat}}{L^2} = \frac{3}{2} \omega_0 \qquad \text{(Long channel model)}$$

- This is related to the channel transit time: $\tau_0 = 1/\omega_0$
- For degenerate short channel device

$$\omega_T = \frac{3}{2} \frac{\nu_{sat}}{L} = \frac{3}{2} \frac{1}{\tau_{sat}}$$

Efficiency g_m/I_D versus f_T

0.35u Process

EECS 240 Lecture 2: CMOS - passive devices

Weak Inversion Frequency Response

• The gate capacitance in weak inversion is given by

$$C_{gb} = C_{ox} \frac{\gamma}{2\sqrt{\gamma^2/4 + V_{GB} - V_{FB}}}$$

$$\omega_T = \frac{\mu \frac{kT}{q}}{L^2} \left(\frac{I_{DS}}{I_M} \right)$$

• I_M is the maximum achievable current in weak inversion so the factor () < 1

Ref: Tsividis, Operation and Modeling of the MOS Transistor

Device Scaling

Short channel devices are significantly faster!

Device Figure-of-Merit

Output Resistance r_o

Hopeless to model this with a simple equation (e.g. $g_{ds} = \lambda I_D$)

Open-loop Gain a_{v0}

- More useful than r_o
- Represents maximum attainable gain from a transistor

- Use feedback to bias $V_{ds} = V_{gs}$
- Use relatively small gain (100) for
- Fast DC conversgence

Gain, $a_{v0} = g_m r_o$

EECS 240 Lecture 2: CMOS - passive devices

Long Channel Gain

EECS 240 Lecture 2: CMOS - passive devices

Technology Trend

Short channel devices suffer from reduced per transistor gain

Transistor Gain Detail

For practical V_{DS} the effect the "short-channel" gain penalty is less severe (remember: worst case V_{DS} is what matters!)

Saturation Voltage vs V*

- Saturation voltage
 - Minimum V_{DS} for "high" output resistance
 - Poorly defined: transition is smooth in practical devices
- "Long channel" (square law) devices:

$$-V_{GS} - V_{TH} = V_{dsat} = V_{ov} = V^*$$

- Significance:
 - Channel pinch-off
 - $I_D \sim V^{*2}$
 - Boundary between triode and saturation
 - r_o "large" for $V_{DS} > V*$
 - C_{GS} , C_{GD} change
 - $V^* = 2 I_D / g_m$
- "Short channel" devices:
 - All interpretations of V* are *approximations*
 - Except V* = 2 I_D / g_m (but V* \neq V_{dsat})

Design Example

<u>Example</u>: Common-source amp $a_{v0} > 70$, $f_u = 100$ MHz for $C_L = 5$ pF

• $a_{v0} > 70 \rightarrow L = 0.35 \mu m$

•
$$g_m \approx 2\pi f_u C_L = 3.14 \text{mS}$$

• High f_T (small C_{GS}): V* = 200mV

•
$$I_D = \frac{g_m V^*}{2} = 314 \mu A$$

EECS 240 Lecture 2: CMOS - passive devices

Device Sizing

- Pick L 0.35µm
- Pick V* 200mV
- Determine g_m 3.14mS
- $I_D = 0.5 g_m V^*$ 314µA
- W from graph (generate with SPICE)
 - $\Rightarrow W = 10 \mu m (314 \mu A / 141 \mu A)$ $= \underline{22 \mu m}$
- Create such graphs for several device lengths for design reference

Common Source Sims

- Amplifier gain > 70
- Amplifier unity gain frequency is "dead on"
- Output range limited to 0.6 V 1.5 V to maintain gain (about 0.45V swing)

Small Signal Design Summary

- Determine g_m (from design objectives)
- Pick L
 - Short channel \rightarrow high f_T
 - Long channel \rightarrow high r_0 , a_{v0}
- Pick $V^* = 2I_D/g_m$
 - Since V* is *approximately* the saturation voltage
 - Small $V^* \rightarrow$ large signal swing
 - − High V* → high f_T
 - Also affects noise (see later)
- Determine I_D (from g_m and V*)
- Determine W (SPICE / plot)
- Accurate for short channel devices \rightarrow key for design

Device Sizing Chart

Generate these curves for a variety of L's and device flavors (NMOS, PMOS, thin oxide, thick oxide, different VT)

Device Parameter Summary

Device Parameter	Circuit Implications	
V*	• Current efficiency, g_m/I_D	
	• Power dissipation (I _D)	
	• Speed (g _m)	
	• Cutoff frequency, $f_T \rightarrow$ phase margin, noise	
	• Headroom, V _{DS,min}	
L	• Cutoff frequency, $f_T \rightarrow$ phase margin, noise	
	• Intrinsic transistor gain (a _{v0})	
W	• Obtain from L, I _D	
	• Self loading (C _{GS} , C _{DB} ,)	

