EECS 240 EECS 240Analog Integrated Circuits nalog Integrated Circuits

Lecture 4: Small-Signal Models for Analog Design Analog Design

Ali M. Niknejad and Bernhard E. Boser © 2006

Department of Electrical Engineering and Computer Sciences

MOSFET Models for Design MOSFET Models for Design

- SPICE (BSIM)
	- For verification
	- Device variations
- Hand analysis
	- –Square law model
	- –Small-signal model
- Challenge
	- –Complexity / accuracy tradeoff
	- – How can we accurately design when large signal models suitable for hand analysis are off by 50% and more?

Device Variations Device Variations

- Run-to-run parameter variations:
	- –E.g. implant doses, layer thickness
	- –Affect $\rm V_{TH}$, $\rm \mu, \rm C_{ox}, \rm R_{\scriptscriptstyle \Box}, \, ...$
	- How model in SPICE?
- Nominal / slow / fast parameters
	- –E.g. fast: low V_{TH} , high μ , high C_{ox} , low R_{\Box}
	- –Combine with supply extremes
	- – Pessimistic but numerically tractable \rightarrow improves chances for working Silicon

Threshold Voltage V_{TH}

- •Strong function of L
- •Use long channel for V_{TH} matching
- • Process variations
	- Run-to-run
	- How characterize?
	- Slow/nominal/fast
	- Both worst-case & optimistic

V_{TH} Design Considerations

- Approximate Values ($L = 0.5 \mu m$) V_{THN} = 600mV V_{n} =0.5 rt-V
	- $V_{THP} = -700mV$ γ_p =0.4 rt-V
- \bullet Back-Gate Bias

$$
V_T = V_{T0} + \gamma \left(\sqrt{\psi_0 + V_{SB}} - \sqrt{\phi_0} \right) \qquad \phi_0 \approx 2\phi_F
$$

e.g.
$$
V_{SB} = 400 \text{mV}
$$
 $\rightarrow \Delta V_{THN} = 110 \text{mV}$

- • Variations:
	- $-$ Run-to-run: $+\prime$ - 50mV (very process dependent)
	- Device-to-device: $\sigma = 2mV (L > 1 \mu m,$ common-centroid)
	- Use insensitive designs
		- diff pairs, current mirrors
		- \rightarrow value of V_{TH} unimportant (if < V_{DD})

Device Parameters for Design Device Parameters for Design

- Region: moderate or strong inversion / saturation
	- –Most common region of operation in analog circuits
	- – XTR behaves like transconductor: voltage controlled current source
- Key design parameters
	- – Large signal
		- Current $I_D \rightarrow$ power dissipation
		- Minimum $V_{DS} \rightarrow$ available signal swing
	- – Small signal
		- Transconductance $g_m \rightarrow$ speed / voltage gain
		- Capacitances C_{GS} , C_{GD} , $\ldots \rightarrow$ speed
		- Output impedance $r_{o} \rightarrow$ voltage gain

Low Frequency Model Low Frequency Model

• A Taylor series expansion of small signal current gives (neglect higher order derivatives)

$$
i_{ds} = \frac{\partial I_{ds}}{\partial V_{gs}} v_{gs} + \frac{\partial I_{ds}}{\partial V_{bs}} v_{bs} + \frac{\partial I_{ds}}{\partial V_{ds}} v_{ds}
$$

$$
i_{ds} = g_m V_{gs} + g_{mb} V_{bs} + g_{ds} V_{ds}
$$

 \bullet Square law model:

$$
g_{m,triode} = \mu C_{ox} \frac{W V_{ds}}{L \frac{\alpha}{\alpha}} \qquad g_m = \mu C_{ox} \frac{W (V_{gs} - V_T)}{L \frac{\alpha}{\alpha}}
$$

$$
g_{ds} = \frac{1}{r_o} = \lambda I_{ds}
$$

EECS 240 Lecture 2: CMOS - passive devices \degree \degree 2006 A. M. Niknejad and B. Boser 7

Transconductance Transconductance

• Using the square law model we have three equivalent forms for g_m in saturation

$$
g_m = \mu C_{ox} \frac{W}{L} \sqrt{\frac{2I_{ds}}{\mu C_{ox} \frac{W}{L}}}
$$

$$
g_m = \sqrt{2\mu C_{ox} \frac{W}{L}} I_{ds} \propto \sqrt{I_{ds}}
$$

$$
g_m = \frac{1}{2}\mu C_{ox} \frac{W}{L}(V_{gs} - V_T)^2 \frac{1}{\frac{1}{2}(V_{gs} - V_T)}
$$

$$
g_m = \frac{2I_{ds}}{V_{gs} - V_T} = \frac{2I_{ds}}{V_{dsat}}
$$

Weak Invesion Invesiongm

• In weak inversion we have bipolar behavior

$$
I_{ds} \approx \frac{W}{L} I_{ds,0} e^{\frac{q(V_{gs} - V_T)}{nkT}}
$$

$$
g_m = \frac{\partial I_{DS}}{\partial V_{GS}} = \frac{\frac{W}{L} I_{ds,0} e^{\frac{q(V_{gs} - V_T)}{nkT}}}{n\frac{kT}{q}}
$$

 \sqrt{r}

$$
g_m = \frac{I_{DS}}{n\frac{kT}{q}} \propto I_{DS}
$$

Transconductance Transconductance

Transconductance Transconductance (cont)

- The transconductance increases linearly with $V_{gs} V_T$ but only as the square root of I_{ds} . Compare this to a BJT that has transconductance proportional to current.
- In fact, we have very similar forms for g_m

$$
g_m^{\text{FET}} = \frac{2I_{ds}}{V_{dsat}}
$$

$$
g_m^{\text{BJT}} = \frac{I_C}{V_t}
$$

- Since V_{dsat} >> V_t , the BJT has larger transconductance for equal current.
- Why can't we make $V_{dsat} \sim V_t$?

Subthreshold Subthreshold Again…

- In fact, we can make $V_{gs} V_t$ very small and operate in the sub-threshold region. Then the transconductance is the same as a BJT (except the non-ideality *n* factor).
- But as we shall see, the transistor f_T drops dramatically if we operate in this region. Thus we typically prefer moderate or strong inversion for high-speed applications.

 $\boldsymbol{\mathsf{u}}$ **C**_{ox}

• Square law:

$$
\mu C_{ox} = \frac{g_m^2}{2\frac{W}{L}I_L}
$$

- Extracted values strong function of I_D
	- Low $I_{D} \rightarrow$ weak inversionLarge $I_D \rightarrow$
		- mobility reduction
- Do not use $\mu C_{ox}^{}$ for design!

400u

- • A good metric for a transistor is the transconductance normalized to the DC current. Since the power dissipation is determined by and large by the DC current, we'd like to get the most "bang" for the "buck".
- • From this perspective, the weak and moderate inversion region is the optimal place to operate.

Efficiency gm/lp

Efficiency gm/ID

• Let's define

$$
V^* = \frac{2I_D}{g_m} \qquad \Longleftrightarrow \qquad \frac{g_m}{I_D} = \frac{2}{V^*}
$$

e.g.
$$
V^* = 200 \text{mV} \rightarrow g_m/I_D = 10 \text{ V}^{-1}
$$

• Square-law devices: $V^* = V_{GS} - V_{TH} = V_{dsat}$

Square law:
$$
g_m = \frac{2I_D}{V_{GS} - V_{TH}} = \frac{2I_D}{V*}
$$

SPICE Charge Model SPICE Charge Model

- •Charge conservation
- \bullet MOSFET:
	- 4 terminals: S, G, D, B
	- –4 charges: $Q_S + Q_G + Q_D + Q_B = 0$ (3 free variables)
	- –3 independent voltages: V_{GS} , V_{DS} , V_{SB}
	- 9 derivatives: $C_{ij} = dQ_i / dV_j$, e.g. $C_{G,GS} \sim C_{GS}$
	- C_{ij} != C_{ji}

Ref: HSPICE manual, "Introduction to Transcapacitance", pp. 15:42, Metasoft, 1996.

Small Signal Capacitances Small Signal Capacitances

$$
C_{GC} = C_{ox}WL
$$

\n
$$
C_{GC} = \frac{\varepsilon_{Si}}{x_d}WL
$$

\n
$$
C_{CB} = \frac{\varepsilon_{Si}}{x_d}WL
$$

\n
$$
C_{OIS} = 0.24 \text{ fF}/\mu\text{m}
$$

\n
$$
C_{OIP} = 0.48 \text{ fF}/\mu\text{m}
$$

EECS 240 Lecture 2: CMOS - passive devices © 2006 A. M. Niknejad and B. Boser 18

MOS Capacitance Example MOS Capacitance Example

subthreshold :

 $C_{ol} = C_{olN}W = 24$ fF $C_{gc} = C_{ox}W_L = 265$ fF µm fF $5.3 \frac{1}{1002}$ $0.5\,$ $\frac{W}{L} = \frac{100}{0.5}$ $=\varepsilon \frac{100}{2}$ *t C W oxSiO ox o* $\frac{\mathcal{E}}{\mathcal{E}}$

$$
C_{gs} = C_{ol} = 24 \text{fF}
$$

$$
C_{gd} = C_{ol} = 24 \text{fF}
$$

triode :

$$
C_{gs} = \frac{1}{2}C_{gc} + C_{ol} = 157 \text{fF}
$$

$$
C_{gd} = \frac{1}{2}C_{gc} + C_{ol} = 157 \text{fF}
$$

saturation :

$$
C_{gs} = \frac{2}{3}C_{gc} + C_{ol} = 201 \text{fF}
$$

$$
C_{gd} = C_{ol} = 24 \text{fF}
$$

EECS 240 Lecture 2: CMOS - passive devices © 2006 A. M. Niknejad and B. Boser 19

 $W/2$

Extrinsic MOS Capacitances Extrinsic MOS Capacitances

 \bullet Source/drain diffusion junction capacitance:

$$
C_{j}(V) \approx \frac{C_{j0}}{\left(1 + \frac{V}{V_b}\right)^m} \quad \text{and} \quad C_{jsw}(V) \approx \frac{C_{jsw0}}{\left(1 + \frac{V}{V_b}\right)^m} \quad C_{j00} = 0.85 \frac{\text{fF}}{\mu \text{m}^2} \quad C_{j00} = 1.1 \frac{\text{fF}}{\mu \text{m}^2}
$$

$$
C_{bc0} = \frac{\varepsilon_{Si}\varepsilon_0}{x_{j0}} \quad \text{with} \quad x_{j0} = \sqrt{\frac{2\varepsilon_{Si}\varepsilon_0}{q_e N_{sub}} |\Phi_{bi}|} \quad V_{bn} = 0.51 \quad V_{bn} = 0.93 \quad V_{bn} = 0.48
$$

 $m_n = 0.39 \quad m_n = 0.48$

 \bullet <u>Example</u>: W/L = 100/0.5, $V_{SB} = V_{DB} = 0V$, L_{diff} = 1 μ m

> $AS = AD = 100 \mu m^2$, $PS = PD = 102 \mu m$ C_{in} = 85fF C_{iswn} = 50fF C_{bc} = 58fF Strong Inversion – Saturation: $C_{sb} = 173 \text{fF}$ C_{db} = 135fF Linear region: $C_{sb} = 164 \text{fF}$ $C_{db} = 164fF$

EECS 240 Lecture 2: CMOS - passive devices © 2006 A. M. Niknejad and B. Boser 21

High Frequency Figures of Merit High Frequency Figures of Merit

• Unity current-gain bandwidth

$$
\omega_T = \frac{g_m}{C_{gs} + C_{gd}}
$$

$$
\omega_T = \frac{3}{2} \frac{\mu V_{dsat}}{L^2} = \frac{3}{2} \omega_0
$$
 (Long channel model)

- This is related to the channel transit time:
- For degenerate short channel device

$$
\omega_T = \frac{3\nu_{sat}}{2L} = \frac{3}{2}\frac{1}{\tau_{sat}}
$$

Efficiency g_m/I_D versus f_T

0.35u Process

EECS 240 Lecture 2: CMOS - passive devices © 2006 A. M. Niknejad and B. Boser 23

Weak Inversion Frequency Response Response

• The gate capacitance in weak inversion is given by

$$
C_{gb} = C_{ox} \frac{\gamma}{2\sqrt{\gamma^2/4 + V_{GB} - V_{FB}}}
$$

$$
\omega_T = \frac{\mu \frac{kT}{q}}{L^2} \left(\frac{I_{DS}}{I_M}\right)
$$

• I_M is the maximum achievable current in weak inversion so the factor $($) < 1

Ref: Tsividis, *Operation and Modeling of the MOS Transistor*

Device Scaling Device Scaling

Short channel devices are significantly faster!

Device Figure Device Figure-of-Merit

Output Resistance ro

Hopeless to model this with a simple equation (e.g. \texttt{g}_{ds} = λ I_D)

Open-loop Gain avo

- More useful than r_{o}
- \bullet Represents maximum attainable gain from a transistor

- Use feedback to bias $V_{ds} = V_{gs}$
- •Use relatively small gain (100) for
- Fast DC conversgence

Gain, a_{v0} = g_m r_o

EECS 240 Lecture 2: CMOS - passive devices © 2006 A. M. Niknejad and B. Boser 29

Long Channel Gain Long Channel Gain

Technology Trend Technology Trend

Short channel devices suffer from reduced per transistor gain

EECS 240 Lecture 2: CMOS - passive devices © 2006 A. M. Niknejad and B. Boser 31

Transistor Gain Detail Transistor Gain Detail

For practical V_{DS} the effect the "short-channel" gain penalty is less severe (remember: worst case V_{DS} is what matters!) V_DS [V]

Saturation Voltage vs V*

- Saturation voltage
	- Minimum V_{DS} for "high" output resistance
	- Poorly defined: transition is smooth in practical devices
- •"Long channel" (square law) devices:

$$
-V_{GS} - V_{TH} = V_{dsat} = V_{ov} = V^*
$$

- Significance:
	- Channel pinch-off
	- \bullet I_D \sim V*2
	- Boundary between triode and saturation
	- r_{o} "large" for $V_{DS} > V^*$
	- $\,$ C_{GS}, C_{GD} change
	- $V^* = 2 I_D / g_m$
- "Short channel" devices:
	- All interpretations of V* are *approximations*
	- Except V* = 2 I_D / g_m (but V* \neq V_{dsat})

Design Example Design Example

Example: Common-source amp $\rm a_{v0}$ > 70, f_u = 100MHz for C_L = 5pF

• a_{ν0}>70 → L =0.35μm

$$
\bullet \ \ g_m \approx 2\pi f_u C_L = 3.14 \text{mS}
$$

• High f $_{\rm \top}$ (small C $_{\rm GS}$): V* = 200mV

•
$$
I_D = \frac{g_m V^*}{2} = 314 \mu A
$$

EECS 240 Lecture 2: CMOS - passive devices © 2006 A. M. Niknejad and B. Boser 34

Device Sizing Device Sizing

- \bullet Pick L $0.35 \mu m$
- Pick V^* 200mV
- \bullet Determine g_m 3.14mS
- $I_D = 0.5 g_m$ $314\mu A$
- \bullet W from graph (generate with SPICE)
	- $\rightarrow W = 10 \mu m (314 \mu A / 141 \mu A)$ $= 22 \mu m$
- \bullet *Create such graphs for several device lengths for design reference*

Common Source Sims Common Source Sims

- Amplifier gain > 70
- Amplifier unity gain frequency is "dead on"
- Output range limited to 0.6 V 1.5 V to maintain gain (about 0.45V swing)

Small Signal Design Summary Small Signal Design Summary

- •Determine g_m (from design objectives)
- • Pick L
	- $-$ Short channel \rightarrow high f_T
	- Long channel \rightarrow high r_o, a_{v0}
- •Pick $V^* = 2I_D/g_m$
	- Since V* is *approximately* the saturation voltage
	- Small $V^* \rightarrow$ large signal swing
	- High $V^* \rightarrow h$ igh f_T
	- Also affects noise (see later)
- •Determine I_D (from g_m and V^*)
- •Determine W (SPICE / plot)
- •**Accurate for short channel devices** \rightarrow **key for design**

Device Sizing Chart Device Sizing Chart

Generate these curves for a variety of L's and device flavors (NMOS, PMOS, thin oxide, thick oxide, different VT)

Device Parameter Summary Device Parameter Summary

