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Editor’ s Note 
This paper is the first in what we hope will become a series. “Classics Revisited” will 

appear periodically in the TRANSACTIONS; these papers will reevaluate the substance and im- 
portance of recognized classics, in terms of their impact on modern microwave technology. 
We expect that the tutorial value of these papers, and their documentation of the creative 
process in our technology, will make them very valuable to our readership. 

This series was proposed by Dr. Gupta, so it is appropriate that he present the first paper. 
Others interested in preparing a paper in this series should contact the MTT editor or Dr. 
Gupta. Because such papers are part historical and part technical, only papers that exhibit a 
high degree of both technical and scholarly value will be accepted. 

Power Gain in Feedback Amplifiers, 
a Classic Revisited 

Madhu S .  Gupta, Fellow, IEEE 

Abstract-This paper is a tutorial review of a classic paper of 
the same title authored by Samuel J. Mason, and published in 
1954. That paper was the first to define a unilateral power gain 
for a linear two-port, and to prove that this gain is invariant 
with respect to linear lossless reciprocal four-port embeddings, 
thereby making it useful as a figure of merit intrinsic to the 
device. The significance of the paper stems from the fact that 
(a) it introduced a new fundamental parameter that is now used 
to evaluate all three-terminal active devices, (b) it initiated work 
on a new line of inquiry, which has led to the discovery of many 
other invariants that describe the essential constraints on the 
behavior of networks, and (c) its results form the foundation 
for many of the basic ideas currently in use, including those of 
the cutoff frequency of transistors, activity of devices, stability 
of amplifiers, and device invariants. The present article brings 
that original paper up-to-date, presents a tutorial exposition of 
its contents in a modern form, and points out its significance 
and applications in microwave engineering. The subsequent 
advances in the subject area of the paper are also summarized 
so that the original paper can be placed within a broader con- 
text, and understood with a more general perspective. 

I.  INTRODUCTION 
HIS PAPER is a tutorial review of a classic paper, T having the title “Power Gain in Feedback Ampli- 

fiers,” authored by Samuel J .  Mason, and published in 
1954 [l]. In that paper, Mason defined a unilateral power 
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gain for a linear twoport, and discussed some of its prop- 
erties. The unilateral power gain Uis  the maximum power 
gain that can be obtained from the twoport, after it has 
been made unilateral with the help of a lossless and recip- 
rocal embeddding network (which provides the required 
feedback). Among the many interesting properties of U 
related to the frequency characteristics, activity, and sta- 
bility of the twoport, perhaps the most important is the 
result due to Mason that U is invariant to a class of trans- 
formations (linear lossless reciprocal embeddings) , and is 
therefore a characteristic inherent to the device. Conse- 
quently, U is useful as a figure of merit of the device, 
both by itself, and through other quantities that can be 
deduced from it. The title of Mason’s paper does not fully 
indicate its contents and applicability. 

Although Mason’s paper originally appeared in a jour- 
nal devoted to circuit theory, its results have been of most 
interest to the microwave device community. This is be- 
cause in practice the value of the device power gain U 
becomes unimportant when U is either smaller than, or 
much larger than, unity; U 2 1 happens to occur in the 
microwave frequency range for most state-of-the-art ac- 
tive devices of the last three decades. 

The present paper is intended to be an exposition of 
both the subject matter of Mason’s paper, as well as its 
applications and generalizations that have appeared in the 
subsequent work in this field. There are three parts to this 
paper. The first part is a tutorial explanation of the con- 
tents of Mason’s paper, explaining the problem posed by 
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Mason, his line of reasoning, and the results obtained. 
The second part of this paper points out the significance 
and utility of Mason’s paper, in light of its later applica- 
tions. The third part of this paper summarizes the ad- 
vances in the search for network invariants that have been 
made since the appearance of Mason’s paper; these ad- 
vances constitute the framework within which Mason’s 
results can be understood with a more general perspec- 
tive. 

11. MASON’S INVARIANT U 
At the time of Mason’s work in 1953, transistors were 

only five years old; were fabricated in germanium with 
alloyed junctions [2]; were the only successful solid-state 
three-terminal active device; were beginning to be devel- 
oped for RF applications; and were limited to frequencies 
in and below the VHF range. According to the introduc- 
tion in his paper [l], Mason was motivated by the desire 
to discover a figure of merit for the transistor. This search 
led him to identify the unilateral power gain of a linear 
twoport as an invariant figure of merit of a linear twoport. 

A .  Mason’s Objective and Approach 
As Mason’s paper deduced a maximum invariant power 

gain, one might expect the starting point of the paper to 
be an expression for the power gain of a linear twoport, 
which is then maximized and proved to be invariant. (Such 
an approach can be found in some textbook treatments of 
the subject [3].) Instead, Mason begins the paper with a 
search for any arbitrary invariant network property that 
might happen to exist, and once it is found, identifies it 
as a power gain. His approach therefore not only finds the 
invariant power gain, but also demonstrates that the uni- 
lateral power gain is both inevitable and the only device 
characteristic that is invariant under a specified class of 
transformations. 

Since the figure of merit of a device should be an in- 
herent characteristic of the device, and not merely an ar- 
tifact of its environment, it must be invariant with respect 
to some types of changes in the environment. Accord- 
ingly, Mason’s stated goal in the paper is to look for a 
property of the linear twoport that is invariant with respect 
to a specified class of transformations. A complete state- 
ment of this problem should include both the specification 
of the device and its environment, as well as the types of 
changes in the environment of the device (the “transfor- 
mations”) under which the desired figure of merit is to 
remain invariant. Mason’s paper therefore proceeds along 
the following major steps: 

(c) It demonstrates that the permissible transforma- 
tions can be made up from a set of just three ele- 
mentary transformation. 

(d) It then deduces the form that a network property 
must have in order for it to be an invariant with 
respect to each of the three elementary transfor- 
mations. 

(e) The resulting form is then found to be a power gain, 
applicable when the device has been embedded in 
a network that makes the embedded device unilat- 
eral. 

E. Problem Definition 
The object whose properties are under study is a linear 

twoport network, and will be called a “device” hereafter, 
in anticipation of the fact that the results will subse- 
quently be applied to transistors and to other active de- 
vices. The device under consideration is constrained by 
three requirements: 

(a) It has only two ports (at which electrical power can 
be transferred between the device and the remain- 
der of the universe). 

(b) It is linear (in the relationships that it imposes be- 
tween the electrical currents and voltages at the two 
ports). 

(c) It is used in a specified manner (connected as an 
amplifier between a linear one-port source network 
and a linear one-port load) as shown in Fig. l(a). 

Since it is otherwise unrestricted, the device can be active 
or passive, lossy or lossless, reciprocal or non-reciprocal, 
symmetric or asymmetric, and spatially distributed or 
lumped. 

Although the search for an invariant property of the de- 
vice can be carried out in terms of any type of network 
parameters (such as the scattering parameters or immit- 
tance parameters), the impedance parameters will be used 
here, so as to retain the flavor of the original line of rea- 
soning used by Mason. Let the open-circuit impedance 
matrix of the device be represented by 2. 

Any transformation of the device environment can be 
conceptualized as an embedding network, as shown in 
Fig. l(b), through which the two ports of the device are 
accessed. The permissible class of transformations can be 
defined in terms of constraints imposed on the embedding 
network. Mason defined the problem as being the search 
for device properties that are invariant with respect to 
transformations as represented by an embedding network 
satisfying the four constraints that it be (a) a four-port, 
(b) linear, (c) lossless, and (d) reciprocal. 

c. Problem Solution 
Mason next demonstrated that all permissible transfor- 

mations that satisfy the above constraints can be synthe- 
sized from just three elementary transformations that are 
carried out sequentially; this is equivalent to representing 
any permissible embedding network by a set of three 

It stipulates the manner in which the device will be 
connected to its environment, and describes its be- 
havior in terms of its twoport network parameters 
at a single frequency. 
It represents a change in the device environment as 
an embedding network and defines the permissible 
changes through some constraints imposed on the 
embedding network. 
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Fig. 1. The given linear twoport device. (a) Connected as an amplifier 
between the linear one-port source and load networks. (b) Embedded within 
a linear lossless reciprocal four-port. (c) Matched to the source and load 
through linear lossless reciprocal tuners. 
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embedding networks nested within each other. The ele- 
mentary transformation are called reactance padding, real 
transformation, and inversion. In circuit terms, the three 
transformations can be described by the lossless embed- 
ding networks shown in Fig. 2. Mathematically, they can 
be defined by expressing the 2' matrix of the transformed 
device in terms of the Z matrix of the device prior to the 
trans formation: 

(a) Reactance Padding: 

where all xu are real. 
(b) Real Transformations: 

L";' zi2] = ["" n12] [Z" Zn] ["'. n 2 j  ( 2 )  

z 5 1  q 2  n 2 1  1222 +%l 2 2 2  1212 1222 

where all no are real. 
(c) Inversion: 

[";' z 5 1  zi2] 2 4 2  = [Z" z 2 1  ""1' 5 2  
(3) 

The embedding networks shown in Fig. 2 are only illus- 
trative and not unique; the above transformations can also 
be achieved by other embedding networks. 

Mason's search for an invariant property of the device 
proceeds by inquiring as to the nature of the quantities 

(a) REACTANCE PADDING 

- 
0 

(b)  REAL TRANSFORMATION 

( E )  INVERSION 

Fig. 2. The three elementary transformations that can synthesize an arbi- 
trary linear lossless reciprocal four-port embedding. 

that remain invariant under each of the three elementary 
transformations: 

(1) The reactance padding transformation leaves the 
following two matrices unchanged 

[Z - Z,] and [Z + Z*] (4) 
where t denotes matrix transposition, and * denotes 
the complex conjugate. Indeed, all quantities left 
unchanged by this transformation are either the ele- 
ments of these two matrices, or are functions 
thereof. Consequently, any property of the device 
that is invariant under the reactance padding trans- 
formation must be a function of only these two 
matrices. 

(2) The real transformation leaves unchanged the de- 
terminant of the ,matrix 

( 5 )  
In fact, this determinant is the only function of the 
two matrices in (4) that has this property. As a re- 
sult, the ratio of determinants 

[Z - Z,] [Z + Z*]? 

det [Z - Z,] 
det [Z + Z*] 

is invariant under both reactance padding and real 
transformations. 

(3) Finally, the inversion transformation leaves the 
magnitudes of the two determinants in the above 
ratio, and the sign of the one in the denominator, 
unchanged. Hence the quantity invariant under all 
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three elementary transformations is 

Idet [Z - Ztll 
det [Z + Z*] 

U =  

(7) 
The quantity U discovered in this manner is the desired 

invariant property of the device, and the principal result 
of Mason's paper. 

D. Alternative Expressions for the Invariant 

in terms of the admittance parameters of the two-port: 
The form of U remains unchanged when it is expressed 

(8) 
An expression for U in terms of the scattering parameter 
matrix S can be found [4] by substituting for the Z matrix 
the identity 

(9) z = (1 + S)(1 - S)- '  

where 1 is a unit matrix. With this substitution, 

I s12 - & , I 2  U =  
det [l - SS*] ' 

Still another useful form of the expression for U is in terms 
of the stability factor k,  defined as 

Since the stability of an active twoport is of prime impor- 
tance, its k may already be known or determined; then U 
can be conveniently found from 

111. THE SIGNIFICANCE OF MASON'S INVARIANT U 
Having established that the quantity U in (7) is an in- 

variant, following Mason, we next turn to identifying its 
physical significance. A physical meaning can be ascribed 
to U in a number of different ways: as a power gain max- 
imum, as a measure of device activity, and as an invariant 
under a class of bilinear Mobius transformations. Each of 
these interpretations of U is examined below in detail. 

A .  U as a Gain Maximum 
One interpretation of U is as a maximum of a power 

gain of the linear twoport device under some specific re- 
strictive conditions. Consider the device embedded in a 
fourport network, as shown in Fig. l(b), and used as an 
amplifier between a linear source network having a source 

impedance 2, and a linear load network having an imped- 
ance Z,. Then, U is the maximum achievable value of the 
power gain of this amplifier, provided: 

1) The embedding network is a linear lossless recip- 
rocal fourport. 

2) The embedded device (i.e., the composite of the 
given device and the embedding network) is uni- 
lateralized. 

3) There is no other connection between the source and 
the load networks, except through the unilateralized 
device. 

4) The source and load impedances 2, and 2, are pas- 
sive, and are the variables with respect to which the 
gain is maximized. 

In order to comprehend this interpretation of U ,  and the 
import of the restrictive conditions imposed in gain max- 
imization, it is necessary to understand the concept of 
unilateralization first. This is discussed next. 

I )  Unilateralization: What is unilateralization? Uni- 
lateralization of a given linear twoport is the process of 
embedding the given device within an embedding net- 
work as shown in Fig. l(b), such that the embedded de- 
vice has no reverse transmission of signals, from the out- 
put port to the input port, i.e., 

2 1 2  = 0 (13) 
where 2' is the open-circuit impedance matrix of the 
transformed device (i.e., the composite of the device and 
the embedding network), defined at the external ports of 
the embedding network. 

How can unilateralization be carried out? A given de- 
vice can be unilateralized in numerous ways, and the 
embedding network needed to unilateralize it is not 
unique. A number of different practical methods of uni- 
lateralization are discussed by Cheng [5], along with ex- 
amples and uses of unilateralization for both electron tubes 
and transistors. For the sake of conceptual understanding, 
one possible method of unilateralization is shown in Fig. 
3. In this method, the embedding network consists of just 
a reactance and an ideal transformer. As a result of its 
simplicity, the manner in which the unilateral nature of 
the transformed device comes about can be easily under- 
stood in this scheme. The added reactance at the output 
port brings about a phase change in the output voltage 
such that it is in phase (or exactly out of phase) with the 
input voltage when Il = 0. The turns ratio (and the po- 
larity) of the transformer in the feedback path is then ad- 
justed so that it introduces a voltage at the input port to 
cancel that due to the reverse transfer through the non- 
unilateral device. Mathematically, the reverse transfer 
impedance of the embedded device of Fig. 3 can be found 
as 

ziz = 212 - n(&2 + jx,) .  (14) 

This can be made to vanish by selecting x2 so as to equate 
the angles of the two complex terms on the right hand 
side, and then selecting n to make their magnitudes equal. 
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Fig. 3 .  One possible method of unilateralizing a given linear twoport by a 
linear lossless reciprocal four-port embedding. 

Why is unilateralization worthy of attention? Unilater- 
alization of a given linear twoport is useful both in prac- 
tice and in concept. Amplifier designers often add feed- 
back elements (i.e., an embedding network) to an active 
device so as to prevent a reverse traveling wave in a cas- 
cade of twoports, and so as to allow tuning or impedance 
matching to be carried out at the output port of the twoport 
without influencing the tuning or matching at the input 
port. Conceptually, unilateralization allows the twoport 
performance to be analyzed and understood more simply 
due to the decoupling of the input side network from the 
output side network. 

2) Gain Maximization after Unilateralization: The 
interpretation of U as a gain maximum can now be under- 
stood. Consider the device embedded within a unilater- 
alizing network that meets the specified conditions, as 
shown in Fig. l(b), and let the open-circuit impedance 
matrix of the transformed device be represented by 2’. 
Since the transformed device is unilateral, 

z;, = 0. (15) 

Consider next the power gain of the transformed device, 
operated between the source and the load networks. If the 
source and the load networks are varied for maximizing 
the power gain, their impedances will attain a value equal 
to the complex conjugate of the input and the output 
impedances of the device, respectively, provided both Re 
[Z;,] and Re [Z&] are positive; i.e., the unilateralized de- 
vice is absolutely stable. Under these conditions, the 
power gain is given by 

(16) 
I ZiI I *  U =  4 Re [Z;,] - Re [Z;,] ’ 

But, from (7), this is also the value of Mason’s invariant 
U for the transformed device under the condition (15). 
This establishes that the maximum power gain of the 
transformed device equals the U of the device. Moreover, 
since this argument holds for every lossless reciprocal 
embedding network, and since the U value is invariant to 
the embedding, every unilateralizing embedding must re- 
sult in the same value of maximum power gain for the 
device, and this value is equal to the U of the device. 

Under what conditions is the unilateralized device ab- 

solutely stable [6] (i.e., the real parts Re [Z;,] and [&,] 
of its open-circuit input and output impedances are both 
positive)? It is clear by inspection that the embedding 
network of Fig. 3 leaves Re [Z,,] unchanged, and that 
Re [Z,,] and Re [Z,,] must have the same sign if U is 
positive. Therefore, if Re [Z,,] and U were known to be 
positive, an embedding network could be found that would 
make the device unilateral and absolutely stable. By mov- 
ing the reactancejx, from the output port to the input port 
in Fig. 3 ,  a similar conclusion can be reached if both Re 
[Z,,] and U are known to be positive. Finally, if U > 1, 
both Re [Z;,] and Re [$,I can be made positive regardless 
of the sign of Re [Z,,] and Re [Z,,]. In conclusion, the 
necessary and sufficient conditions for the unilateralized 
device to be absolutely stable are as follows: 

(1) U is positive, and at least one of the two resistances 
R I ,  = Re [Z,,] and Rz2 = Re [Z,,] is positive; or 

(2) U is greater than unity (when neither R I ,  nor R2, is 
positive). 

3) Constraints Imposed in Gain Maximization: The 
conditions imposed on the embedding network, under 
which U has been shown to be a gain maximum, are very 
important for the proper interpretation of U ,  since U is 
neither the only gain maximum that can be defined (i.e., 
other gain maxima also exist), nor the global or the high- 
est maximum (i.e., power gain values higher than U can 
be achieved by proper embedding). These two statements 
are now briefly explained. 

U is not the highest power gain that can be obtained 
from the device in an arbitrary circuit. Indeed, if the de- 
vice is active ( U  > l ) ,  the maximum power gain obtain- 
able from the device is infinite, which is in evidence when 
the device is used in an oscillator circuit. The power gain 
of a linear twoport in a fourport embedding will neces- 
sarily have a finite maximum value with respect to the 
source and load impedances only under certain condi- 
tions, e.g., when the device is passive, or if active, it is 
absolutely stable and does not have a feedback path be- 
tween the output and the input ports. It is clear that a gain 
maximum can be defined only if some restrictions are 
placed on the device and/or its embedding network. 

Consider next the need for the conditions imposed on 
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the fourport embedding network in defining U. Each of 
the two constraints, of losslessness and reciprocity, is 
essential for defining a gain maximum for an active device 
in general. Indeed, Leine [7] shows by examples that if 
the embedding is lossless but not reciprocal, or if it is 
reciprocal but not lossless, the maximum power gain of 
the device in the circuit of Fig. l(b) is unbounded if the 
device is active. The two constraints under which U is a 
maximum gain are thus also the minimum conditions for 
the existence of a finite power gain maximum when the 
device is embedded in an arbitrary fourport. 

Finally, the importance of the unilateralization require- 
ment can be demonstrated by a counter-example. In the 
special case where the fourport embedding network con- 
sists of two decoupled twoports, one at each port of the 
device, as shown in Fig. l(c), the conditions for the ex- 
istence of a gain maximum can be expressed entirely in 
terms of the device parameters, without imposing the re- 
quirements of losslessness and reciprocity on the embed- 
ding network. The stability factor k defined in (1 1) serves 
as a test of stability, and if its value at a given frequency 
is greater than 1, the device is absolutely stable, thereby 
ensuring that the maximum gain is finite. In this case, 
however, the maximum power gain (attained under si- 
multaneous conjugate matched conditions at each port) is 
181 

G,,, = (2U - 1) + 2 JU(U - 1) (17) 

and this can be larger than U. In the limit of large U ,  this 
approaches the value 4U. It is clear that U is not a gain 
maximum unless the device is first unilateralized by the 
embedding network. 

4) Other Gain Maxima: A clearer understanding of the 
meaning and significance of the unilateral power gain U 
can be gained by comparing it with other kinds of power 
gain maxima determined under different conditions. A 
number of different power gain maxima have been defined 
in the literature, and are used in microwave work, from 
which Mason’s unilateral power gain should be distin- 
guished. These include the maximum available power gain 
G,, [3], Rollet’s maximum stable power gain G,, [9], 
and Kotzebue’s maximally efficient power gain G,, [ 101. 
Their definitions and expressions are compared in Table 
I. The range of applicability and utility of these various 
power gain maxima are different. As an example, for 
many transistors at low frequencies, where Rollet’s [9] 
stability factor k < 1, G,, becomes infinite and is there- 
fore defined only at higher frequencies where k > 1 ; the 
other three gain maxima of Table I exist even if k < 1. 
In particular, U is defined regardless of whether the de- 
vice is active or passive, and absolutely stable or poten- 
tially unstable. 

B. U as a Measure of Activity 
The unilateral power gain U is not useful as a design 

goal or guideline, unless the active device is actually to 
be unilateralized. Its utility stems from the fact that U is 

intimately related to the property of device activity. In 
fact, it not only serves as an indicator of activity in the 
device, but also as a quantitative measure of the device 
activity. This direct relationship with the property of ac- 
tivity makes U a quantity of fundamental importance. 

The conditions under which a linear twoport device is 
active can be expressed in many different forms [6], and 
in terms of different network parameters. When expressed 
in the frequency domain, for real sinusoidal signals (i.e., 
at a single frequency s = 0 + j w  lying on the imaginary 
axis in the complex frequency plane), and in terms of the 
impedance matrix of the twoport at that frequency, the 
condition is as follows. The twoport is active if any of the 
following conditions holds [6]: 

(1) Rii Re [ ~ I I  < 0 (18a) 

(2) R22 = Re rz221 < 0 (18b) 

(3) det [Z + Z:] < 0. ( 1 8 4  

A device satisfying one (or both) of the first two con- 
ditions is said to have a “negative-resistance activity. ” 
By contrast, a device meeting only the third condition (and 
neither of the first two) is said to have a “transfer activ- 
ity.” The transfer active twoports are of particular im- 
portance because they form the backbone of electronics, 
and include such devices as triodes, pentodes, bipolar 
junction transistors, and field-effect transistors. We now 
show that the condition of transfer activity can be ex- 
pressed entirely in terms of U as follows. 

This condition, given in (18c), can be written in the 
following form after some algebraic simplification: 

4 (RllR22 - R12R21) - IZ12 - &,I2 < 0 (19) 
where R,j denotes the real part of Z,. If the given device 
has no negative resistance activity after it has been uni- 
lateralized by a linear lossless reciprocal fourport embed- 
ding, it follows that 

Ri, > 0 and Ri2 > 0. (20) 
For such a device, Mason’s unilateral gain U must nec- 
essarily be positive, since (16) shows that U is positive 
after unilateralization, and U is invariant to the embed- 
ding. But if U > 0, it follows from (7) that the first term 
on the left-hand side of (19) is positive; then the condition 
of activity in (19) can be written with the help of (7) as 

U >  1 (21) 
The magnitude of U can therefore be used to test for the 
presence of transfer activity in a twoport. Moreover, if 
the U of a given device is a function of frequency (which 
is the case for all physical devices), the value of U can be 
used to identify the frequency range over which the device 
remains active. 

C. U as a Canonical Property 
One particularly illuminating method of understanding 

a characteristic property shared by all members of a set is 
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TABLE I 
LINEAR TWOPORT POWER GAIN MAXIMA USED AS FIGURES OF MERIT 

Symbol Name Definition or Conditions 
Expression in 

Immittance Parameters 
Expression in 
[SI Parameters 

Maximum Transducer gain"' G, maximized with respect I Y2I / Y I 2 l 2  where 
x + m' Is,l S2 I (k f m) Available to rC and rL (or available gain with respect 

G,, Gain to r,) 
2 Re [ Y l l l  Re - Re VI, Y 2 J  x =  I y12 Y2I I 

Maximum Device just stabilized [i.e., k = 1 ~bta ined '~ ' ]  

respect to rG and rL. 
G,, Stable Gain by resistive loading; then G, maximized with 

S2 I 

Is,l 
Maximum Power gain'3' G reached when the power S2 I 
Efficient 
Gain 

added by device (for a fixed input power) has I Y 2 l I Z  - I Y12I2 Is,[ - 1 
been maximized with respect to rL. 

4 Re [Yll Y2,1 - 2 Re VI, Y21l - 2 I Ylzl2 G,, 

Unilateral 
Power 
Gain 

G, maximized with respect to rc and I?,, 
after device has been unilateralized (i.e., Si, 
= 0 attained) by lossless reciprocal 
embedding. 

I YI2 - Y2lI2 

4 (Re [ Y I J  Re IYz21 - Re [Y121 Re [ Y 2 J  
2k 

1 - ISI,I* - lS*212 + ISllS2, - Sl2S2Il2 

2 I SI21 IS,, I "'Kurokawa's stability factor k = 

through the use of a canonical representation of the set. 
A canonical form for a class of networks is the clearest or 
simplest form, employing the least possible number of pa- 
rameters, to which the given class of networks can be re- 
duced by the allowed type of transformations, and which 
displays the common characteristics of the class, or the 
constraints imposed by them, in an easily understood way. 
Consider the set of all twoports that can be formed from 
the given twoport by linear lossless reciprocal transfor- 
mations of the type shown in Fig. l(b). A characteristic 
property of the set, established by Mason, is that every 
member of the set has the same unilateral power gain U. 
Since U is claimed to be the only invariant property of 
this set, it should be possible to develop a canonical net- 
work for the set with only one parameter. Such a "mini- 
mum" form for the above mentioned set of twoports is 
developed in this section. To keep the discussion intui- 
tive, the following development employs the open-circuit 
impedance matrix of the twoports; an alternative ap- 
proach employing scattering matrix is also available in the 
literature [ 1 11. 

A linear twoport with a given impedance matrix can be 
represented by the equivalent circuit shown in Fig. 4(a). 
This twoport can be reduced to the canonical form shown 
in Fig. 4(f) through the use of linear lossless reciprocal 
transformations. The successive steps in this reduction are 
illustrated schematically in Fig. 4 ,  and are as follows: 

(i) As demonstrated in Section 111-A, it is always pos- 

sible to find a lossless reciprocal transformation which will 
make the twoport unilateral, as shown in Fig. 4(b). One 
such transformation is the feedback network of Fig. 3. 
The impedance matrix elements of the resulting unilateral 
twoport are given by 

z;, = z,, - (R12/R22)&1 

4 2  = &2 + "R12)X12 - X 2 2 l  

z;, = &l - 4 2 .  

(22a) 

(22b) 

(22c) 

(ii) The imaginary parts of the two driving point 
impedances Z;, and G2 can be reduced to zero by reac- 
tance padding at each of the twoports, which is also a 
lossless reciprocal transformation. As a result of this 
transformation, the two impedances become 

R;, = Re [Z;,] (23a) 

Ri2 = Re [Z.,]. (23b) 

(iii) The twoport can be impedance matched to a de- 
sired real reference impedance R, at both ports, with the 
help of a real transformer at each port, which is also a 
lossless reciprocal transformation. The only element of 
the impedance matrix that is left flexible after this trans- 
formation is 
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(a) GIVEN TWOPORT 
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(b) AFTER UNILATERALIZATION 
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(d) AFTER BILATERAL MATCHING 

0 BILATERALLY- 
MATCHED 

0 TWOPORT 

(e) AFTER ADDITION OF LINE LENGTH 

1 

(0 THE CANONICAL FORM 

Fig. 4. Deduction of the canonical network for the set of twoports created 
by lossless reciprocal embeddings of a given twoport. 

(iv) Finally, a lossless length of transmission line, hav- 
ing a characteristic impedance R, can be added at either 
port, and its length adjusted, until the twoport has a real 
transfer impedance. The resulting twoport is the canonical 
form of Fig. 4(e), and has an impedance matrix 

where 

which can be demonstrated with the help of (24) and (7). 
The canonical network of Fig. 4(f) is the circuit repre- 
sentation of the impedance matrix in (25). It is clear that 
the canonical form of the twoport requires only a single 
real parameter for its specification. 

The canonical representation provides an alternative 
interpretation for Mason's invariant U of a given twoport. 
The scattering matrix of the canonical network can be 
found from the impedance matrix, and is given by 

As might have been anticipated, if a given twoport is 
transformed, by a lossless reciprocal transformation, to a 
unilateral, phase-shift-less, matched twoport, matched at 
each port to a resistive reference impedance, the scatter- 
ing matrix of the resulting twoport is completely de- 
scribed by the forward transfer function. By definition of 
scattering parameters, this transfer function is equal to the 
square-root of the unilateral power gain. 

D. U as an Invariant of Bilinear Transformations 
From a formal and abstract viewpoint, any embedding 

network can be viewed as simply a mathematical trans- 
formation applied to the terminal characteristics of the 
device embedded within it. The fact that the U of the 
embedded network does not change when the embedding 
device is restricted to be of certain types suggests the 
possibility that U may be interpreted as a geometrical or 
an algebraic property that is invariant under the class of 
mathematical transformations representing the permissi- 
ble embeddings. Such an interpretation of U is described 
in this section. For clarity of exposition, the line of rea- 
soning is presented here with emphasis on its essential 
elements and plausibility rather than on the highest pos- 
sible rigor and generality. Accordingly, the twoport under 
consideration in this section may be assumed to be passive 
so as to avoid complications (e.g., twoport instability on 
matching, and reflection coefficients that lie outside the 
unit circle), although the results can be generalized. 

I) A Matched Circuit Model: Bilateral impedance 
matching of a linear twoport consists in embedding the 
given twoport such that the embedded network has the 
following property: with either of its ports terminated in 
the reference impedance, the input impedance looking into 
the other port is equal to the same reference impedance. 
In practical applications of linear twoports, it is common- 
place to attempt to carry out this impedance matching at 
each port without introducing either additional losses or 
nonreciprocal elements. Theoretically, a lossless recip- 
rocal embedding network can always be found that will 
make the twoport bilaterally matched. Consider the given 
twoport embedded in one such matching network, as 
shown in Fig. 5(a). The bilateral matching of the twoport 
is most readily apparent when the twoport is described in 
terms of its scattering parameters (defined with respect to 
the same reference impedance at the two ports): 

r 7 

where p1 and p2 are two complex numbers. This represen- 
tation suggests a very simple equivalent circuit model for 
the matched twoport, shown in Fig. 5(b). This model em- 
ploys an ideal fourport circulator and two oneports having 
reflection coefficients equal to the reverse and forward 
transmissions p1 and p2 of the matched twoport. 

The unilateral gain U of the circuit model of Fig. 5(b) 
can be found by substituting the [SI matrix elements from 



872 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 5 ,  MAY 1992 

LOSSLESS. RECIPROCAL, 
BILATERALLY-MATCH ING 
EMBEDDING NETWORK 

LINEAR 
TWOPORT 

(4 (b) 

I. EQUIVALENT CIRCUIT MODEL FOR A MATCHED TWOPORT 

MATCH-PRESERVING, 
LOSSLESS. RECIPROCAL 
EMBEDDING NETWORK 

U U 

LOSSLESS 

r = p ;  =-++- LOSSLESS 

U. TRANSFORMATION BY A MATCH-PRESERVING EMBEDDING 

DISTANCE BETWEEN p1 AND pp : - 
CONSISTENCY REQUIREMENTS GEODESIC 

NP1,P,) = 6(P2.P1P 0 

6 ( P 1 , p p )  + @ P Z , P 3 ) ’ 6 ( P 1 , P 3 )  

6( pl,p,) = 0 IF AND ONLY IF p, = pp 

RIGHT 
(e) ANGLES (1 )  

111. POINCARE MODEL OF TWO-DIMENSIONAL HYPERBOLIC SPACE 

Fig. 5 .  Interpretation of U as a hyperbolic distance and a cross-ratio. 

(27) into (10): 

IP2 - P11 

I1 - PTP2l 
U =  

This is then also the U for the given twoport, since the 
model differs from the original twoport only in respect of 
a lossless reciprocal embedding which leaves the U un- 
changed. 

The matching network shown in Fig. 5(a) is, of course, 
not unique; as a result neither are p 1  and p2. Consider now 
the set of all bilaterally matched twoports that can be cre- 
ated from the given twoport by embedding it in different 
lossless, reciprocal fourport embedding networks. Since 
the inverse of a lossless reciprocal transformation is also 
a lossless reciprocal transformation, all twoports belong- 
ing to the set can be viewed as lossless reciprocal trans- 
formations of the matched twoport of Fig. 5(a), or that of 
its equivalent circuit model shown in Fig. 5(b). This is 
indicated in Fig. 5(c), which represents an arbitrary mem- 
ber of the set. Since each member of the set is bilaterally 
matched, it should also be possible to represent it by an 
equivalent circuit model of the type shown in Fig. 5(b), 
but with a different pair of reflection coefficients, say pi 
and p i .  Indeed, the oneports having reflection coefficients 

p ;  and p i  can themselves be viewed as transformations of 
the oneports having reflection coefficients p1 and p2,  as 
shown in Fig. 5(d). Imposing the constraints of lossless- 
ness and reciprocity on the embedding network of Fig. 
5(c) leads to the conclusion that a single lossless twoport 
can transform p 1  and p2 into pi and pi  respectively. The 
two twoports appearing in Fig. 5(d) are therefore identi- 
cal. 

We thus arrive at the crux of the argument. The circuit 
of Fig. 5(d) is a model for the given twoport, embedded 
as shown in Fig. 5(a), and a change in the embedding 
network causes a change in only the lossless twoports N ,  
but not in p 1  and p2. Therefore, a function of the oneport 
reflection coefficients p1 and p2, that is invariant to loss- 
less embedding by N ,  is also an invariant of the given 
twoport under the permissible class of embeddings. Such 
an invariant function of p1 and p2 can be found by either 
a geometrical or an algebraic technique; both of these are 
described below in that order. 

2) A Geometrical Interpretation: Prior to the advent 
of computer-aided circuit analysis and design software, 
impedance transformation and microwave circuit design 
calculations were often carried out with the help of graph- 
ical constructions, and many graphical aids, charts, and 
procedures were developed for this purpose. Some of these 
techniques are based on the use of concepts and results 
from non-Euclidean geometry. An introduction to the 
concepts of non-Euclidean geometry, and their applica- 
tions in electrical engineering, will not be attempted here; 
a tutorial exposition [ 121 and a survey of applications [ 131 
are available in the literature, and include citations to 
many other references. The following discussion is lim- 
ited to the one result from hyperbolic geometry that is 
required for the present purposes. 

Very briefly, a hyperbolic geometry is a non-Euclidean 
geometry in which Euclid’s axiom of parallel lines is not 
employed, and the sum of the angles of a triangle does 
not equal 27r radians. As in any geometry, the distance 
between two points can be defined with some self-con- 
sistent metric, having the properties of additivity and a 
zero. In the Poincark model shown in Fig. 5(e), the in- 
terior of a circle serves as the two-dimensional hyperbolic 
space, with the periphery (called the “absolute”) being 
infinitely far. The geodesics (which, analagous to Euclid- 
ean “straight lines,” are lines of shortest length between 
any two points on the lines) are circles that approach the 
absolute at right angles. The distance between two points 
is measured along the geodesic, and can be algebraically 
expressed as the logarithm of a ratio, as shown in Fig. 
5(f). One of the basic results from this model is the in- 
variance of the hyperbolic distance between two points. 

The hyperbolic distance between two points can be 
given a circuit interpretation [14]. Let the two points in 
the complex plane be represented by complex numbers p I  
and p 2 ,  and consider two oneport networks having the re- 
flection coefficients equal to p 1  and p2. Further suppose 
that a lossless twoport N is designed such that it trans- 
forms the first oneport to a perfectly matched load, i.e.,  
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the transformed reflection coefficient pi = 0. If the same 
network N is used to transform the second oneport, its 
reflection coefficient will become p i .  The voltage stand- 
ing wave ratio (VSWR) of this transformed oneport does 
not depend on the choice of N ,  and when expressed in 
some logarithmic unit such as dB or nepers, is the hyper- 
bolic distance between p1 and p2. This is given by 

I1 - PTPzl + IP1 - Pzl . 
(29) N P l ,  P2) = In 

I1 - PTP21 - IP1 - P21 

In summary, if the complex numbers p 1  and p2 repre- 
sent reflection coefficients of two oneport networks, the 
hyperbolic distance 6(pl ,  p2)  between them does not 
change when both oneports are transformed through the 
same lossless linear twoport. This basic result has been 
applied, and rediscovered, in numerous applications. For 
example, the figure of merit of two-state switching diodes 
[ 1 I] ,  that is invariant to lossless transformations, is sim- 
ply the hyperbolic distance between the impedances of the 
diode in its two states. 

This result can now be applied to the circuit model of 
Fig. 5(d). Although pi and p i  in this model are not unique, 
the hyperbolic distance between them is. Moreover, since 
the distance 6 ( p l ,  p,) is invariant to N ,  so is any function 
of 6; in particular: 

IP1 - P21 

11 - PTP21 
tanh (6/2) = 

is independent of the matching network of Fig. 5(a). This 
is the same as the unilateral gain of (28). Thus U may be 
interpreted as a function of the hyperbolic distance be- 
tween the forward and reverse transmissions of the bilat- 
erally-matched twoport. 

3) An Algebraic Interpretation: An algebraic interpre- 
tation is closely related to the above. The reflection coef- 
ficient p of a linear oneport, when viewed through an 
embedding linear twoport, undergoes a transformation of 
the form 

where a ,  b ,  c ,  and d are four complex numbers, and are 
characteristics of the embedding twoport. If the trans- 
forming twoport is constrained to be lossless, the four 
complex numbers are also constrained, and the most gen- 
eral form that this transformation can take is as follows: 

where A ,  01 and p are all real constants. The reflection 
coefficients pi and pi in Fig. 5(d) can therefore be ex- 
pressed in terms of p1  and p,, and when these are substi- 
tuted for pI  and p2 in the expression for unilateral gain 
given in (28), the value of U is found to remain un- 
changed. 

A more general interpretation of U along the above lines 
is possible. A bilinear Mobius transformation [15] is a 

mapping that takes a given complex number Z into an- 
other complex number W (the “image of Z”) given by 

(33) 

where a ,  b ,  L’ and d are complex constants. This is a com- 
monly occurring transformation in the theory of linear 
networks, and the relationship between many pairs of 
quantities of interest takes this form, e.g., an impedance 
and the corresponding reflection coefficient, or the input 
impedance and the load impedance of a linear twoport. 
Supplemented by the convention that W = a / c  for Z = 
cy,, and W = cy, for Z = - d / c ,  this transformation is both 
a conformal and a topological mapping of the extended 
plane onto itself, the topology being defined by distances 
on the Riemann sphere. Such a mapping is uniquely de- 
fined by specifying three distinct points in the Z plane, 
and their corresponding images in W plane (i.e., there is 
one and only one transformation for which this would be 
true). 

The bilinear transformation has a number of remarkable 
geometrical properties, one of which is the invariance of 
the so-called “cross-ratio. ” The cross-ratio of four com- 
plex numbers Z1, Z,, 5, and Z4 is the image of Z, under 
a linear transformation which carries Z,, Z 3 ,  and Z4 into 
1, 0, and 03 (provided that Z,, Z 3 ,  and Z4 are distinct from 
each other). It is given by 

The cross-ratio has some interesting properties; for ex- 
ample, it is real if, and only if, the four numbers Z1, Z,, 
Z3, and Z4 lie on a circle. The one property of the cross- 
ratio relevant to the present discussion is its invariance 
under a bilinear transformation: if Wl, W,, W,, and W4 
are the images of Z1, Z,, Z3, and Z4 under the transfor- 
mation in (33), then 

The hyperbolic distance defined in Fig. 5(f) is in fact 
based on a cross-ratio. 

An embedding network can be viewed as a bilinear 
transformation [ 161, and Mason’s U as a special case of 
the cross-ratio. A proof of this statement, presented in a 
more general setting, is contained in Section V-A below. 

IV. APPLICATIONS OF MASON’S INVARIANT U 
The results of Mason’s paper have been employed in 

numerous ways since their publication. The first applica- 
tion, which originally motivated the work, was to the bi- 
polar junction transistor, an active device then in its in- 
fancy. When biased in its active region, and operated 
under small-signal conditions, this device could be rep- 
resented by a linear twoport, so that a bias and frequency 
dependent U could be defined for it. Several authors de- 
termined the unilateral power gain of the early germanium 



874 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 5 .  MAY 1992 

transistors as a function of frequency, discussed the effect 
of various transistor equivalent circuit elements on the 
value of U ,  and thus deduced the limitations on the range 
of frequencies over which the transistors could be em- 
ployed as active devices [ 171, [ 181. Some of these appli- 
cations are described in this Section. 

A. U as a Figure of Merit 
Prior to Mason’s discovery of the invariant U ,  and for 

sometime thereafter until the importance of U was widely 
recognized, there was general uncertainty about the choice 
of a measure of device performance that should be used 
to describe the capability of a device in delivering power 
at high frequencies. As an example of this uncertainty, in 
the early work on bipolar junction transistors, a number 
of different types of power gains were used to evaluate 
the high-frequency performance of the device, including 
maximum available power gain [19], and the maximum 
attainable power gain when the source impedance is con- 
strained to be purely resistive [ 181. When used as a device 
figure of merit, these parameters have a number of limi- 
tations; e.g., they are influenced by conditions external 
to the device, and they depend on the manner in which 
the transistor is connected in the circuit (e.g., common- 
base versus common-emitter). The invariant U provided 
the device designers with a fundamental criterion for 
judging the goodness of a device. Moreover, since a com- 
mon-emitter connection can be transformed into a com- 
mon-base connection simply by embedding the former 
within a lossless reciprocal network composed of wires, 
U is invariant with respect to the method of connection, 
and serves as a more useful measure of device perfor- 
mance. An alternative proof of the invariance of U to the 
choice of input and output terminals may be given in terms 
of the indefinite admittance matrix [20]. 

Perhaps the most convincing evidence of the utility of 
the concept of a unilateral power gain as a device figure 
of merit is the fact that for the last three decades practi- 
cally every new active twoport device developed for high- 
frequency use (and some passive ones as well [2 11, [22]) 
have been carefully scrutinized for the achievable value 
of U ,  the frequency dependence of U ,  the influence of 
device parameters on U ,  and the design techniques for 
enhancing the device U. Published accounts of these ef- 
forts include the analysis of: 

Bipolar junction transistors by Statz, et al. [17]; 
Transit-time transistors by Zuleeg and Vodicka [23] ; 
Junction FET’s by Das and Schmidt [24]; 
Silicon MOSFET’s by Burns [25]; 
Dual-gate MOSFET’s by Burns [25]; 
GaAs MOSFET’s by Mimura, et al. [26]; 
Microwave Silicon MESFET’s by Baechtold and 
Wolf [27]; 
GaAs MESFET’s by Bechtel, et al. [28]; 
HEMT’s by Vickes [29]; and 
Hetero-junction Bipolar transistors by Prasad, et al. 

Since the U was recognized as an important figure of 
merit of the device, its measurement was necessary for 
comparing the transistors, and for measuring the progress 
in their design. Accurate methods for the measurement of 
U were therefore developed, and the measurements were 
employed in the characterization of the transistors [3 11. 
There are two different ways of determining the uni- 
lateral power gain of a given device at a specified fre- 
quency: one is by a direct experimental measurement in 
which a device is unilateralized and its power gain is ex- 
perimentally maximized, and the other is by computation 
from the measured network parameters of the device. The 
former method is now obsolete, and the measurement of 
U for high-frequency devices is now almost invariably 
carried out with the help of an automatic network ana- 
lyzer. The measured scattering parameters of the transis- 
tor can be used to determine the U in two different ways: 
either by a direct substitution of the network parameters 
in the expression for U given in (lo),  or by first fitting the 
measured parameters to a device equivalent circuit, from 
which U can be calculated in terms of the fitted values of 
the circuit elements appearing in the equivalent circuit. 
The agreement between the two possible estimates of U 
depends on the degree of fit (i.e., on the accuracy of the 
measured data, and the validity of the equivalent circuit). 

Despite the fact that U is a more fundamental and ele- 
gant measure of active device capability, it is not used as 
widely in the electron device community as some of the 
other figures of merit, particularly the maximum available 
gain G,, (e.g., [32]). There are several reasons for this: 

(a) For many devices and conditions, the values of U 
and G,,,, are not far from each other [33]. This small 
difference is especially unimportant when the gain 
is large. 

(b) All power gains are equally easy to calculate from 
the immittance or scattering parameters. But when 
they are determined directly from an equivalent- 
circuit model of the device, U is less obvious due 
to the need to unilateralize the model. 

(c) In some cases, U is not the most convenient or 
practical parameter. For example, if the twoport 
under consideration is a frequency converter, the 
unilateralizing circuit must also be a frequency 
converter so that the feedback is compatible. Such 
a feedback circuit is easier to use in thought exper- 
iments [34] than in laboratory experiments. 

B. U as an Indicator of Activity 
A related application of the idea of U has been in clar- 

ifying the conceptual problems. The direct relationship of 
U to activity helps identify a passive network, or con- 
strain the kind of performance expected from it. One ex- 
ample of the kind of misunderstanding that can be cleared 
through the use of U is given in [8], where Singhakowinta 
and Boothroyd [8] showed how to avoid a misunderstand- 
ing caused by earlier authors who had treated an unreal- 

~301. izable feedback network as passive. 
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C. Dejinition of fmax 

An evaluation of the relative power gain capability of 
two active devices requires, in general, a comparison of 
their U values over the entire frequency range of interest, 
since the unilateral power gain U is a function of fre- 
quency. (Only if the nature of the frequency dependence 
of U( f )  is known in advance, or is restricted, for example 
by confining the consideration to a single type of active 
devices, it may be sufficient to compare devices on the 
basis of their U values at just one frequency.) Clearly, it 
would be convenient and desirable to have a single-num- 
ber measure of the quality of active devices. Such a sim- 
ple, and highly practical, figure of merit can be derived 
from the unilateral gain U( f ) ,  and is called the maximum 
oscillation frequencyf,,,; it is defined as the frequency at 
which U becomes unity, i.e., 

u(f>If=fm,,, = 1 (36) 

If the unilateral power gain is a monotonic function of 
frequency, as is usually the case, fmax is a well-defined, 
single-valued parameter. It is commonly used as a mea- 
sure of the high-frequency capabilities of an active de- 
vice. Its significance follows from the property of U ex- 
pressed in (2 1 )  (that U exceeds unity for an active device). 
The maximum frequency of oscillations is therefore also 
the maximum frequency of activity. 

The concept of a highest frequency above which power 
gain cannot be obtained from an active device, that had 
long been known from practical experience, thus became 
established on firm theoretical grounds with Mason's 
work, and was discussed in the literature immediately 
thereafter [ 171. The first explicit mention of thef,,, in the 
literature appears to be due to P. R. Drouilhet [35], who 
defined it, deduced an expression for it, and measured it 
for transistors. 

The value off,,, also serves as a benchmark, indicating 
the level of development of active device technology. 
Thus, the state-of-the-art values of fmax were of the order 
of lo9 in the 1950s, of the order of 10'' in the 1970's, 
and are of the order of 10" in the nineties. 

In principle, there are three different methods of mea- 
suring the f,,, for a given two-port active device. The 
most direct, and conceptually the simplest, is the one in 
which the device is embedded in an oscillator circuit, with 
the input and output circuits incorporating a tuner (a low- 
loss two-port with variable impedance matrix), and at- 
tempts are then made to produce oscillations in the circuit 
at as high a frequency as possible. The accuracy of this 
manual method is dependent on the losses in the tuners, 
and the sensitivity with which the presence of a oscilla- 
tions can be detected against the background noise. A 
more modern and efficient method off,,, measurement is 
through the use of an automatic network analyzer, which 
typically yields S parameters of the two-port; then the 
unilateral power gain can be calculated as function of fre- 
quency from the measured S parameters by ( lo) ,  and the 
frequency at which it drops to unity can thus be found. 

Another commonly used method utilizes the measured S 
parameter data to deduce the values of the circuit ele- 
ments in an equivalent circuit of the device by a numerical 
best-fit; the maximum available gain of the device is then 
calculated from the equivalent circuit, and the frequency 
at which it drops to unity can be calculated in terms of the 
equivalent circuit elements. If the equivalent circuit is 
physically based, this method allows extrapolation of the 
results to higher frequency; the need for this is explained 
below. If the measurement and circuit modeling errors are 
small, the results obtained by the various methods can be 
in good agreement, as demonstrated for MESFET's [27] 
and HBT's [36]. 

An accurate measurement of U as a function frequency, 
in the neighborhood of the high frequencies where it is 
unity, has always been difficult for state-of-the-art de- 
vices. (The fmax for modem transistors lies in the mm- 
wave and sub-mm wave range, where there are no accu- 
rate automatic network analyzers; and even in the earlier 
decades, when the f,,, values were lower, so were the 
capabilities of the contemporary instrumentation.) As a 
result, the reported values off,,, for transistors are often 
based on the measurement of U as a function of frequency 
over a range of frequencies (typically, well below f,,,), 
and then an extrapolation of the U to higher frequencies. 
The extrapolation implies an a priori knowledge of the 
nature of frequency variation of U ,  usually based on the 
physical reasoning or a known equivalent circuit for the 
device [37]. 

Interestingly, the frequency at which U attains the value 
of 1 is also the frequency at which the maximum stable 
gain G,, and the maximum available gain G,, of the de- 
vice also become unity. As a result, alternative interpre- 
tations can be given to the quantityf,,,. More important, 
it is not necessary to measure U ( f )  in order to determine 
fmax; one of the other gains can be used if it is easier to 
measure (and more reliably extrapolate). Many of the ear- 
lier papers on this subject [33], [38], [39] either state, or 
imply through graphical plots, that the frequency at which 
U becomes unity is higher than the ones at which G,, or 
G,, become unity. This notion is incorrect, and a formal 
proof of their equality has been published [40]. 

Several different cutoff frequencies of active devices 
(and in particular transistors) have been discussed in the 
literature. In addition tof,,,, these include the lowest (or 
dominat) pole frequency in the device transfer function; 
the low-pass cutoff frequency of an R-C network at the 
input or the output port of the device; a cutoff frequency 
due to phase delay (e.g., caused by the carrier transit-time 
in the device); the unity short-circuit current gain fre- 
quencyfT [41]; and the highest natural frequency of a net- 
work with multiplicity of active devices. Thef,,, is a fun- 
damental characteristic of the device, and has the physical 
significance that it is the maximum frequency of oscilla- 
tion in a circuit in which the following three conditions 
are met: (i) there is only one active device present in the 
circuit, (ii) the device is embedded in a passive network, 
and (iii) only single sinusoidal signals are of interest. 
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If these conditions are not met, a device may be made 
to produce oscillations at frequencies higher thanf,,,, and 
it is possible to define other cutoff frequencies that are 
variants off,,,. For example, in integrated circuits, it is 
commonplace to have multiple active devices, or equiv- 
alently, an active device embedded in an active network. 
In such circuits, a more useful measure of the high-fre- 
quency capability of the device may be the power transfer 
cutoff frequency f p T  [42], which is the frequency of unity 
power gain with no unilateralization and with a load con- 
sisting of another identical device. Still another cutoff fre- 
quency suitable in integrated circuits is the maximum fre- 
quency of oscillation achievable in a circuit in which 
multiple identical copies of the device are permitted. Such 
a generalization off,,, has been discussed in the literature 
[431. 

V .  GENERALIZATIONS OF U: OTHER NETWORK 
INVARIANTS 

Invariant properties of networks are interesting and im- 
portant because an invariant parameter that is a charac- 
teristic of the network can be put to many uses. One pos- 
sible use of an invariant parameter is as a figure of merit 
of the network, that can serve as a basis for comparing 
different networks, for quantifying the change in a net- 
work caused by some design modification, and for mea- 
suring the progress towards a design goal. A second po- 
tential use of an invariant parameter is as a reference or a 
benchmark value that can be used to check the accuracy 
of a computation, modeling, or measurement of the net- 
work characteristic, by verifying whether the value of the 
parameter has remained unchanged. A third use of in- 
variants is in identifying the limitations to the perfor- 
mance of a network, establishing the bounds on attainable 
characteristics, and determining the feasibility of some 
design goal. As a result of their utility, many different 
invariant properties of netwqrks have been discovered 
over the years. 

All known invariant parameters of networks can be 
classified into two groups based on the manner in which 
they are deduced [44]. One group, called “quasi-power 
invariants,” consists of quantities that have the dimen- 
sions of power, or are functions thereof. Such invariants 
can be deduced from Tellegen’s theorem, or from a more 
general matrix constraint expressing the linear time-in- 
variance of the embedding network. 

The second group of invariants consists of dimension- 
less quantities that follow from the cross-ratio invariance 
property [16] of bilinear transformations, or from its ma- 
trix generalization [44]. Mason’s U is only one, and the 
earliest discovered, of the dimensionless invariants of the 
cross-ratio type. Other invariants of this type can be 
viewed as generalizations of Mason’s invariant U ,  and are 
introduced here briefly. 

Mason’s method of search for the invariant property of 
the twoport not only proves that U is an invariant, but also 
simultaneously establishes that it is the only invariant 

meeting the stated specifications. Therefore, the search 
for still other network invariants is futile unless the spec- 
ifications of the problem are changed. One way of chang- 
ing the problem specification is by relaxing one or more 
of the constraints imposed on the device and the embed- 
ding network in Mason’s work. Mason’s statement of the 
problem of network invariant search, given in Section 
11-B, contains the following constraints: 

(a) that the device has exactly two ports; 
(b) that the network parameters of the device are con- 

stant (i.e., the device is time-invariant); 
(c) that the embedding network is necessarily lossless 

and reciprocal; and 
(d) that the embedding network has four ports (i.e., the 

number of ports of the device remains unchanged 
upon embedding). 

Network invariants can be found without some (or all) 
of these constraints, and the resulting invariants can be 
viewed as generalizations of Mason’s U. Interestingly 
enough, some of these invariants had already been dis- 
covered independently, and out of necessity in some ap- 
plications, before a more systematic search for them was 
undertaken [45]. A number of these invariants, such as 
those for characterizing the switching devices and the 
high-Q varactors, find applications in microwave engi- 
neering. The possibility of still other extensions and 
variations of Mason’s invariant problem, based on net- 
work parameters other than impedance matrices, or 
broadband constraints, or nonlinear networks, or transfer 
rather than driving point functions, have also been briefly 
discussed in the literature [45], [46]. 

A .  Generalization to n-Ports 
In the problem of Section 11-B, if the device under con- 

sideration is taken to be an n-port, and the linear lossless 
reciprocal embedding network is simultaneously allowed 
to be a 2n-port, an invariant generalized power gain can 
be deduced. 

As a generalization of the cross-ratio of four complex 
numbers, given in (34), one can define a cross-ratio of 
four n X n matrices Z,, Z,, 5, and Z,, which is another 
n X n matrix given by 

R = [Z, - 2 2 1  [Z, - Z3]-1 [[Z, - 2 2 1  [Z, - Z,]-’]-’. 

(37) 
The four given matrices can be thought of as the open- 
circuit impedance matrices of four different n-port linear 
networks. Consider now a 2n-port linear embedding net- 
work, that transforms each of the four conceptualized n- 
ports into another n-port, having open-circuit impedance 
matrices Z;, 24, 24, and 2;; the cross-ratio of the trans- 
formed matrices is then found to be 

R’ = HRH (38) 
where H is an n X n matrix whose elements obviously 
depend on the embedding network. Such a transformation 
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of R to R’ is called a similarity transformation, and it 
leaves some of the characteristics (such as the eigenval- 
ues) of the cross-ratio matrix R unchanged. One of the 
unchanged characteristics is the value of the determinant 
of R; i.e., 

det [Z, - Z2]/det [Z, - Z3] 
det [Z4 - Z2]/det [Z4 - 5 1  det [R’] = det [RI = 

(39) 
regardless of the transforming matrix H (and hence the 
embedding network). 

This invariance property in (39) can be employed to 
develop many network invariants (that are invariant to the 
transformation through the 2n-port embedding network) 
by appropriate choice of the four given impedance mat- 
rices. For instance, if only one n-port, having an imped- 
ance matrix 2, is of interest, the four required impedance 
matrices Z,,  Z2, Z3, and Z4 can be taken to be 2, Z,, -Z*, 
and -ZT, respectively. With these four impedances, the 
invariant in (39) becomes 

ldet [Z - 2,]12 
(det [Z + 2*])2’ 

det [RI = 

This quantity is an invariant of the given n-port. When 
applied to the special case of a two-port, it reduces to the 
square of Mason’s U function given in (7). Since the four 
selected impedance matrices can be generated from the 
given Z by the successive application of two transforma- 
tions Z -+ 2, and Z + -Z*, and these two transforma- 
tions commute with the 2n-port embedding provided the 
embedding is lossless and reciprocal, not only the numer- 
ical value of the det [RI but also its functional form are 
preserved under the transformation by such an embedding 
network. 

If the four impedances were selected in a different or- 
der, as 2, Z,, -ZF, and -Z*, the invariant determinant 
becomes 

ldet [Z - Z,] I 
(det [Z + 21“])2 

This invariant has also been derived earlier by other meth- 
ods [45]. Still other invariants can be found by other 
choices of the four impedance matrices. 

B. Generalization to Time-Varying Networks 
It has been assumed throughout the above discussion 

that the properties of the device are time-invariant. In en- 
gineering practice, there are numerous instances in which 
a device is expected to perform as a linear network, but 
with different parameter values at different times. Exam- 
ples of such devices are electronic switches, control cir- 
cuits, and parametric devices. In each case, the network 
parameters of the device are made to vary in a controlled 
manner (or in response to a control signal), either between 
two or more distinct values (as in a switch), or continu- 
ously with time (as in a parametric device). Many in- 

variants of such networks can be found in a manner that 
is a generalization of Mason’s method, and some of them 
have a useful physical or practical significance. 

Perhaps the simplest example of such an invariant is the 
figure of merit of a switching diode and has been men- 
tioned in Section III-D. If the device under consideration 
is a linear oneport, and is capable of existing in two dif- 
ferent states having impedances 2, = R1 + j - X1 and Z2 
= R2 + j X 2 ,  the figure of merit is defined as 

It is a measure of the separation between the impedance 
values of the diode in the two states, and serve as a mea- 
sure of the usefulness of the diode as a switching element 

The procedure for deducing the invariants is a direct 
application of the general procedure described in Section 
V-A, along with an appropriate choice for the four imped- 
ance matrices needed to form the cross-ratio of (37). As 
the simplest case, consider an n-port linear network that 
can exist in two discrete states, and has the open-circuit 
impedance matrices 2, and Z2 in the two states. One pos- 
sible method of generating the four required matrices is 
through the use of a transformation, such as Z -+ -2”. 
Then the four matrices are Z,, Z2, -Zr, and -2: re- 
spectively, and the invariant determinant becomes 

(43) 
ldet [Zl - 2 2 1  I 

det [Z, + Zf] det [Z2 + Z:] * 

This invariant, specialized to the case of a scalar imped- 
ance Z (i.e., a 2-state, one-port linear device) is identical 
with Kurokawa’s “quality factor for switching diodes. ” 
Once again, other invariants can be found by alternative 
choices of the four impedance matrices. For instance, a 
mere reordering of the four matrices as [ZJ, [51 ,  [-Z,*l 
and [ -Zf] results in the invariant 

det [Z, - Z2] 
det [Z, + Z:] (44) 

Alternatively, if the matrices Z3 and Z4 are generated 
through the transformation Z -, -2; applied to the given 
matrices Z1 and Z2 respectively, the resulting invariant in 
(39) would be 

det [Z, - Z2] 
det [Z, + Zg]’ (45) 

Both of these invariants, in (44) and (45), when applied 
to one-ports, encompass Kawakami’s invariant [48]. 

Generalization of the above method to 3-state and 
4-state networks is straightforward by using the corre- 
sponding impedance matrices. An extension to p-state 
network forp > 4 is also possible, by defining cross-ratio 
matrices R for four matrices at a time, and then forming 
a chain of R matrices [45]. This would yield n invariants 
of the p-state n-port network. Finally, if the impedance 
matrix of the n-port is a continuous function of some pa- 
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rameter, the set of discrete 
placed by a continuum. 

states can be conceptually re- 

C. Generalization to Other Embeddings 
It is not necessary that the number of ports of the device 

remain unchanged when it is embedded; i.e., the embed- 
ding network for an n-port device need not have exactly 
2n ports. If the embedding has a larger number of ports, 
the given n-port device can be conceptually enlarged by 
adding disjointed ports with short-circuits at those ports. 
When the embedding has fewer than 2n ports, the reduc- 
tion in the number of ports causes the invariants to be 
replaced by constraints, expressed as inequalities among 
the moduli of eigenvalues of some matrices related to the 
cross-ratio. Some details of this approach can be found in 
the literature [45]. 
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