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Lorentz Reciprocity Theorem
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• Consider two sources J1 and J2 inside S. Inside S and on the boundary the fields
satisfy Maxwell’s Eq.

∇× E1 = −jωH1

∇× H1 = J1 + jωε1E1

• Now use the following vector identify

∇ · (E1 × H2 − E2 × H1) =

= (∇× E1) · H1 − (∇× H2) · E1 − (∇× E2) · H1 + (∇× H1) · E2

= −jωH1 · H2 − (J2 + jωεE2) · E1 + jωH2 · H1 + (J1 + jωεE1) · E2
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Reciprocity (cont)

• After the massacre, only a few terms survive. Apply the divergence theorem (you
saw it coming)

∫

V

∇ · (E1 × H2 − E2 × H1)dV =

∮

S

(E1 × H2 − E2 × H1) · dS =

=

∫

V

(J1 · E2 − J2 · E1)dV

• For a sourceless region, the RHS is identically zero and we have one form of
reciprocity

∮

S

E1 × H2 · dS =

∮

S

E2 × H1 · dS

• On the other hand, if the integral encloses all of the sources, we can show that the
surface integral term is zero.

• Let’s take a few cases. Say S is a perfectly conducting surface so that Et = 0.
Then n × E = 0 and

(E1 × H2) · n̂ = (n̂ × E1) · H2 = 0
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Conductive Surface

• It takes a bit more work, but we can also show that the above holds if the surface S
has surface impedance Zs

Et = ZsJs = −Zsn̂ × H

n̂ × E = −Zsn̂ × (n̂ × H)

(n̂×E1) ·H2 − (n̂×E2) ·H1 = −Zs(n̂× n̂×H1) ·H2 + Zs(n̂× n̂×H2) ·H1

= −Zs(n̂ × H2) · (n̂ · H1) + Zs(n̂ × H1) · (n̂ · H2) = 0
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Radiation Boundary

• Consider a sphere at infinity. At infinity the fields become TEM

H =

√
ε

µ
âr × E

(n̂ × E1) · H2 − (n̂ × E2) · H1 =

=

√
ε

µ
((âr × E1) · (âr × E2) − (âr × E2) · (âr × E1)) = 0

• One can actually show that for any surface enclosing all the sources, the integral
vanishes so that

∫

V

E1 · J2dV =

∫

V

E2 · J1dV

• For point sources
E1J2 = E2J1
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Uniqueness Theorem

• An electromagnetic field is uniquely determined within a bounded region V at all
times t > 0 by the initial values of the electric and magnetic vectors through V and
the values of the tangential component of the electric vector or the magnetic vector
over the boundaries for t ≥ 0.

• Proof: Assume the solution is not unique and two distinct solutions are E1/H1 and
E2/H2.

E1(t = 0) = E2(t = 0) H1(t = 0) = H2(t = 0)

• Assume linear field equations (exclude ferromagnetic materials) so that the
difference fields are also a solution

V

S

µ, ε, σ

E , E1 − E2

H , H1 − H2
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Uniqueness (cont)

• Assume sources are outside of V so that withing V Poynting’s Thm is satisfied

∂

∂t

∫

V

1

2
(ε|E|2 + µ|H|2)dV +

∫

V

ρ|J |2dV = −

∮

S

(E × H) · dS

• Since both solutions satisfy the boundary conditions, n × E = 0 or n × H = 0,
and so the RHS is zero.

• We have the following

∂

∂t

∫

V

1

2
(ε|E|2 + µ|H|2)
︸ ︷︷ ︸

≥0

dV = −

∫

V

ρ|J |2dV

︸ ︷︷ ︸

≤0

• Since integrand is zero at time t = 0 and non-zero for t > 0, the only consistent
solution is E = 0 and H = 0 for t ≥ 0.
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The Network Formulation
• Imagine that S is a perfectly conductor. Then Et ≡ 0 on the surface of S except at

the reference planes. Thus if the voltage or current is given at each reference
plane, the fields are uniquely determined inside V . For instance if voltages V1,
V2,· · · are specified, then the currents into each port are a linear combination of
the voltages (if the materials are linear):

I1 = Y11V1 + Y12V2 + Y13V3 + · · ·

I2 = Y21V1 + Y22V2 + Y23V3 + · · ·

I3 = Y31V1 + Y32V2 + Y33V3 + · · ·

...

ε,

V

S

µ, σ

1

2

3

S′

• Or in general, we can define an N × N complex matrix Y such that

i = Y v
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Network Formulation (cont)

• Similarly if the currents at the ref. planes, then tangential magnetic fields are also
known and unique sol’n of Maxwell’s eq. inside V follows. The tangential E-fields,
or the voltages, can then be computed as a linear combination of the voltages

V1 = Z11I1 + Z12I2 + Z13I3 + · · ·

V2 = Z21I1 + Z22I2 + Z23I3 + · · ·

V3 = Z31I1 + Z32I2 + Z33I3 + · · ·

...

• What if the boundary is not a perfect conductor? Then introduce a new surface S ′

several skin depths within the conductor so that the tangential fields are essentially
zero. Then the same argument as above applies except now the conductive
portion will led to loss and contribute to the real part of Yij or Zij .
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Symmetry of Impedance Matrix
• Suppose all terminals (ref planes, ports) are shorted except at the i’th plane. The

solution to Maxwell’s eq. is Ei,Hi. Similarly Ej,Hj corresponds to the case when
all terminals except the j’th plane are shorted. By the Lorentz Reciprocity Them:

∮

S

(Ei × Hj − Ej × Hi) · dS = 0

• For a sourceless region bounded by S. Let S consist of conducting walls bounding
the junction and the N terminal planes. The integral over the walls vanishes if the
walls are perfectly conducting or if the walls exhibit a surface impedance Zm. So
the above reduces to

N∑

n=1

∫

tn

(Ei × Hj − Ej × Hi) · dS = 0

• But n × Ei and n × Ej are zero at all terminal planes except i and j

∫

ti

Ei × Hj · dS =

∫

tj

Ej × Hi · dS

or
Vi(Ii)j = Vj(Ij)i
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Symmetry (cont)

• (Ii)j is the current at the terminal plane i arising from an applied voltage at plane j

Ii = (Ii)j = YijVj

Ij = (Ij)i = YjiVi

Therefore
ViVjYij = VjViYji

or
Yij = Yji

• Since Z = Y −1, the inverse of a symmetric matrix is also symmetric

AA−1 = I

It = I = At(A−1)t

(A−1)t = (At)−1

At = A → A−1 = (A−1)t
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Loss Free Networks

• For any network we have

−

∮

(E × H
∗) · dS =

N∑

m=1

VmI∗m = 2WL + 4jω(Wm − We)

• Since Vm =
∑N

n=1
ZmnIn and WL ≡ 0

N∑

m=1

N∑

n=1

ZmnInI∗m = 4jω(Wm − We)

• Let all ports be open except port i:

ZiiIiI
∗
i = 4jω(Wm − We)

• Thus the diagonal terms are imaginary. Now let all ports be open circuited except
port i and j

ZijIiI
∗
j + ZjiIjI∗i + Zii|Ii|

2 + Zjj |Ij |
2 = 4jω(Wm − We)
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Loss Free Networks (cont)

• We thus have
<

(
ZijIiI

∗
j + ZjiIjI∗i

)
= 0

• Since the network is reciprocal, Zij = Zji, so

<







Zij (IiI
∗
j + IjI∗i )

︸ ︷︷ ︸

real







= 0

• That means that Zij has to be imaginary.

• In conclusion, for a lossless reciprocal network, Z is imaginary. Since Y = Z−1,
Y is also imaginary.

University of California, Berkeley EECS 217 Lecture 6 – p. 13/25



Scattering Matrix

1

2

3

V
+

1

V
−

1

V
+

2

V
−

2

V
+

3

V
−

3

• Voltages and currents are difficult to measure directly at microwave freq. Z matrix
requires “opens”, and it’s hard to create an ideal open (parasitic capacitance and
radiation). Likewise, a Y matrix requires “shorts”, again ideal shorts are impossible
at high frequency due to the finite inductance.

• Many active devices could oscillate under the open or short termination.
• S parameters are easier to measure at high frequency. The measurement is direct

and only involves measurement of relative quantities (such as the SWR or the
location of the first minima relative to the load).

• It’s important to realize that although we associate S parameters with high
frequency and wave propagation, the concept is valid for any frequency.
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Incident and Scattering Waves

•• Let’s define the vector v+ as the incident “forward” waves on each transmission
line connected to the N port. Define the reference plane as the point where the
transmission line terminates onto the N port.

• The vector v− is then the reflected or “scattered” waveform at the location of the
port.

v+ =









V +

1

V +

2

V +

3

...









v− =









V −
1

V −
2

V −
3

...









• Because the N port is linear, we expect that scattered field to be a linear function
of the incident field

v− = Sv+

• S is the scattering matrix

S =








S11 S12 · · ·

S21

. . .
...







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Relation to Voltages

• The fact that the S matrix exists can be easily proved if we recall that the voltage
and current on each transmission line termination can be written as

Vi = V +

i + V −
i Ii = Y0(I+

i − I−i )

• Inverting these equations

Vi + Z0Ii = V +

i + V −
i + V +

i − V −
i = 2V +

i

Vi − Z0Ii = V +

i + V −
i − V +

i + V −
i = 2V −

i

• Thus v+,v− are simply linear combinations of the port voltages and currents. By
the uniqueness theorem, then, v− = Sv+.
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Measure Sij

1

2

3

V
+

1

V
−

1

V
−

2

V
−

3

4

5

6

Z0

Z0

Z0

Z0

Z0

• The term Sij can be computed directly by the following formula

Sij =
V −

i

V +

j

∣
∣
∣
∣
∣
V

+

k
=0 ∀ k 6=j

• In other words, to measure Sij , drive port j with a wave amplitude of V +

j and
terminate all other ports with the characteristic impedance of the lines (so that
V +

k
= 0 for k 6= j). Then observe the wave amplitude coming out of the port i
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S Matrix for a 1-Port Capacitor

Z0 C

• Let’s calculate the S parameter for a capacitor

S11 =
V −
1

V +

1

• This is of course just the reflection coefficient for a capacitor

S11 = ρL =
ZC − Z0

ZC + Z0

=

1

jωC
− Z0

1

jωC
+ Z0

=
1 − jωCZ0

1 + jωCZ0
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S Matrix for a 2-Port Shunt Element
• Consider a shunt impedance connected at the junction of two transmission lines.

The voltage at the junction is of course continuous. The currents, though, differ

V1 = V2

I1 + I2 = YLV2

Z0 Z0ZL

• To compute S11, enforce V +

2
= 0 by terminating the line. Thus we can be re-write

the above equations

V +

1
+ V −

1
= V −

2

Y0(V
+

1
− V −

1
) = Y0V −

2
+ YLV −

2
= (YL + Y0)V −

2

• We can now solve the above eq. for the reflected and transmitted wave

V −
1

= V −
2

− V +

1
=

Y0

YL + Y0

(V +

1
− V −

1
) − V +

1

V −
1

(YL + Y0 + Y0) = (Y0 − (Y0 + YL))V +

1

S11 =
V −
1

V +

1

=
Y0 − (Y0 + YL)

Y0 + (YL + Y0)
=

Z0||ZL − Z0

Z0||ZL + Z0
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Shunt Element (cont)
• The above eq. can be written by inspection since Z0||ZL is the effective load seen

at the junction of port 1.
• Thus for port 2 we can write

S22 =
Z0||ZL − Z0

Z0||ZL + Z0

• Likewise, we can solve for the transmitted wave, or the wave scattered into port 2

S21 =
V −
2

V +

1

• Since V −
2

= V +

1
+ V −

1
, we have

S21 = 1 + S11 =
2Z0||ZL

Z0||ZL + Z0

• By symmetry, we can deduce S12 as

S12 =
2Z0||ZL

Z0||ZL + Z0
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Conversion Formula
• Since V + and V − are related to V and I, it’s easy to find a formula to convert for

Z or Y to S

Vi = V +

i + V −
i → v = v+ + v−

Zi0Ii = V +

i − V −
i → Z0i = v+ − v−

• Now starting with v = Zi, we have

v+ + v− = ZZ−1

0
(v+ − v−)

• Note that Z0 is the scalar port impedance

v−(I + ZZ−1

0
) = (ZZ−1

0
− I)v+

v− = (I + ZZ−1

0
)−1(ZZ−1

0
− I)v+ = Sv+

• We now have a formula relating the Z matrix to the S matrix

S = (ZZ−1

0
+ I)−1(ZZ−1

0
− I) = (Z + Z0I)−1(Z − Z0I)
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Conversion (cont)

• Recall that the reflection coefficient for a load is given by the same equation!

ρ =
Z/Z0 − 1

Z/Z0 + 1

• To solve for Z in terms of S, simply invert the relation

Z−1

0
ZS + IS = Z−1

0
Z − I

Z−1

0
Z(I − S) = S + I

Z = Z0(I + S)(I − S)−1

• As expected, these equations degenerate into the correct form for a 1 × 1 system

Z11 = Z0

1 + S11

1 − S11

University of California, Berkeley EECS 217 Lecture 6 – p. 22/25



Reciprocal Networks
• We have found that the Z and Y matrix are symmetric. Now let’s see what we can

infer about the S matrix.

v+ =
1

2
(v + Z0i)

v− =
1

2
(v − Z0i)

• Substitute v = Zi in the above equations

v+ =
1

2
(Zi + Z0i) =

1

2
(Z + Z0)i

v− =
1

2
(Zi − Z0i) =

1

2
(Z − Z0)i

• Since i = i, the above eq. must result in consistent values of i. Or

2(Z + Z0)−1v+ = 2(Z − Z0)−1v−

Thus
S = (Z − Z0)(Z + Z0)−1
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Reciprocal Networks (cont)

• Consider the transpose of the S matrix

St =
(
(Z + Z0)−1

)t
(Z − Z0)t

• Recall that Z0 is a diagonal matrix

St = (Zt + Z0)
−1(Zt − Z0)

• If Zt = Z (reciprocal network), then we have

St = (Z + Z0)
−1(Z − Z0)

• Previously we found that

S = (Z + Z0)−1(Z − Z0)

• So that we see that the S matrix is also symmetric (under reciprocity)

St = S
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Another Proof

• Note that in effect we have shown that

(Z + I)−1(Z − I) = (Z − I)(Z + I)−1

• This is easy to demonstrate if we note that

Z2 − I = Z2 − I2 = (Z + I)(Z − I) = (Z − I)(Z + I)

• In general matrix multiplication does not commute, but here it does

(Z − I) = (Z + I)(Z − I)(Z + I)−1

(Z + I)−1(Z − I) = (Z − I)(Z + I)−1

• Thus we see that St = S.
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