EECS 217 *Lecture 5: The Smith Chart*

Prof. Niknejad

University of California, Berkeley

The Smith Chart

- The Smith Chart is simply ^a graphical calculator for computing impedance as ^a function of reflection ${\sf coefficient} \ z = f(\rho)$
- More importantly, many problems can be easily visualized with the Smith Chart
- This visualization leads to ^a insight about the behavior of transmission lines
- All the knowledge is coherently and compactly represented by the Smith Chart
- Why else study the Smith Chart? It's beautiful!
- There are deep mathematical connections in the Smith Chart. It's the tip of the iceberg! Study complex analysis to learn more.

An Impedance Smith Chart

Without further ado, here it is!

Generalized Reflection Coefficient

In sinusoidal steady-state, the voltage on the line is ^a T-line

$$
v(z) = v^{+}(z) + v^{-}(z) = V^{+}(e^{-\gamma z} + \rho_L e^{\gamma z})
$$

Recall that we can define the reflection coefficient anywhere by taking the ratio of the reflected wave to the forward wave

$$
\rho(z) = \frac{v^-(z)}{v^+(z)} = \frac{\rho_L e^{\gamma z}}{e^{-\gamma z}} = \rho_L e^{2\gamma z}
$$

Therefore the impedance on the line ...

$$
Z(z) = \frac{v^+ e^{-\gamma z} (1 + \rho_L e^{2\gamma z})}{\frac{v^+}{Z_0} e^{-\gamma z} (1 - \rho_L e^{2\gamma z})}
$$

Normalized Impedance

...can be expressed in terms of $\rho(z)$

$$
Z(z) = Z_0 \frac{1 + \rho(z)}{1 - \rho(z)}
$$

It is extremely fruitful to work with normalized impedance values $z = Z/Z_0$

$$
z(z) = \frac{Z(z)}{Z_0} = \frac{1 + \rho(z)}{1 - \rho(z)}
$$

- Let the normalized impedance be written as $z=r+jx$ (note small case)
- The reflection coefficient is "normalized" by default since for passive loads $|\rho| \leq 1.$ Let $\rho = u + jv$

Dissection of the Transformation

Now simply equate the \Re and \Im components in the above equaiton

$$
r + jx = \frac{(1+u) + jv}{(1-u) - jv} = \frac{((1+u+jv)(1-u+jv))}{(1-u)^2 + v^2}
$$

To obtain the relationship between the (r,x) plane and the (u,v) plane

$$
r = \frac{1 - u^2 - v^2}{(1 - u)^2 + v^2}
$$

$$
x = \frac{v(1 - u) + v(1 + u)}{(1 - u)^2 + v^2}
$$

The above equations can be simplified and put into ^a nice form

Completing Your Squares...

If you remember your high school algebra, you can derive the following equivalent equations

$$
\left(u - \frac{r}{1+r}\right)^2 + v^2 = \frac{1}{(1+r)^2}
$$

$$
(u-1)^2 + \left(v - \frac{1}{x}\right)^2 = \frac{1}{x^2}
$$

- These are circles in the (u,v) plane! Circles are good!
- We see that vertical and horizontal lines in the (r,x) plane (complex impedance plane) are transformed to circles in the (u,v) plane (complex reflection coefficient)

Resistance Transformations

- $r=0$ maps to $u^2+v^2=1$ (unit circle)
- $r=1$ maps to $(u-1/2)^2+v^2=(1/2)^2$ (matched real part)
- $r = .5$ maps to $(u 1/3)^2 + v^2 = (2/3)^2$ (load R less than Z_0
- $r=2$ maps to $(u-2/3)^2+v^2=(1/3)^2$ (load R greater than $Z_0)$

Reactance Transformations

- $x=\pm 1$ maps to $(u-1)^2+(v\mp 1)^2=1$
- $x=\pm 2$ maps to $(u-1)^2+(v\mp 1/2)^2=(1/2)^2$
- $x=\pm 1/2$ maps to $(u-1)^2+(v\mp 2)^2=2^2$
- Inductive reactance maps to upper half of unit circle
- Capacitive reactance maps to lower half of unit circle

Complete Smith Chart

Load on Smith Chart

- **•** First map z_L on the Smith Chart as ρ_L
- To read off the impedance on the T-line at any point on a lossless line, simply move on ^a circle of constant radius since $\rho(z)=\rho_L e^{2j\beta}$

Motion Towards Generator

- **•** Moving towards generator means $\rho(-\ell) = \rho_L e^{-2j\beta\ell}$, or clockwise motion
- For a lossy line, this corresponds to ^a spiral motion
- We're back to where we started when $2\beta \ell = 2\pi$, or $\ell = \lambda/2$
- Thus the impedance is periodic (as we know)

SWR Circle

Since SWR is a function of $|\rho|$, a circle at origin in (u,v) plane is called an SWR circle

- Recall the voltage max occurs when the reflected wave is in phase with the forward wave, so $\rho(z_{min}) = |\rho_L|$
- This corresponds to the intersection of the SWRcircle with the positive real axis
- Likewise, the intersection with the negative real axis is the location of the voltge min

Example of Smith Chart Visualization

- Prove that if Z_L has an inductance reactance, then the position of the first voltage maximum occurs before the voltage minimum as we move towards the generator
- A visual proof is easy using Smith Chart
- On the Smith Chart start at any point in the upper half of the unit circle. Moving towards the generator corresponds to clockwise motion on ^a circle. Therefore we will always cross the positive real axis first and then the negative real axis.

Impedance Matching Example

- Single stub impedance matching is easy to do with the Smith Chart
- Simply find the intersection of the SWR circle with the $r=1$ circle
- The match is at the center of the circle. Grab a reactance in series or shunt to move you there!

Admittance Chart

- Since $y=1/z=\frac{1-\rho}{1+\rho},$ you can imagine that an Admittance Smith Chart looks very similar
- In fact everything is switched around ^a bit and you can buy or construct ^a combined admittance/impedance smith chart. You can also use an impedance chart for admittance if you simply map $x\to b$ and $r\to g$
- Be careful ... the caps are now on the top of the chart and the inductors on the bottom
- The short and open likewise swap positions

Admittance on Smith Chart

- Sometimes you may need to work with both impedances and admittances.
- This is easy on the Smith Chart due to the impedance inversion property of a $\lambda/4$ line

$$
Z'=\frac{Z_0^2}{Z}
$$

If we normalize Z^\prime we get y

$$
\frac{Z'}{Z_0} = \frac{Z_0}{Z} = \frac{1}{z} = y
$$

Admittance Conversion

- Thus if we simply rotate π degrees on the Smith Chart and read off the impedance, we're actually reading off the admittance!
- Rotating π degrees is easy. Simply draw a line through origin and z_L and read off the second point of intersection on the SWR circle