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The Smith Chart

The Smith Chart is simply a graphical calculator for
computing impedance as a function of reflection
coefficient z = f(ρ)

More importantly, many problems can be easily
visualized with the Smith Chart

This visualization leads to a insight about the behavior
of transmission lines

All the knowledge is coherently and compactly
represented by the Smith Chart

Why else study the Smith Chart? It’s beautiful!

There are deep mathematical connections in the Smith
Chart. It’s the tip of the iceberg! Study complex analysis
to learn more.
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An Impedance Smith Chart

Without further ado, here it is!
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Generalized Reflection Coefficient

In sinusoidal steady-state, the voltage on the line is a
T-line

v(z) = v+(z) + v−(z) = V +(e−γz + ρLeγz)

Recall that we can define the reflection coefficient
anywhere by taking the ratio of the reflected wave to the
forward wave

ρ(z) =
v−(z)

v+(z)
=

ρLeγz

e−γz
= ρLe2γz

Therefore the impedance on the line ...

Z(z) =
v+e−γz(1 + ρLe2γz)
v+

Z0
e−γz(1 − ρLe2γz)
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Normalized Impedance

...can be expressed in terms of ρ(z)

Z(z) = Z0

1 + ρ(z)

1 − ρ(z)

It is extremely fruitful to work with normalized
impedance values z = Z/Z0

z(z) =
Z(z)

Z0

=
1 + ρ(z)

1 − ρ(z)

Let the normalized impedance be written as z = r + jx
(note small case)

The reflection coefficient is “normalized” by default
since for passive loads |ρ| ≤ 1. Let ρ = u + jv
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Dissection of the Transformation

Now simply equate the < and = components in the
above equaiton

r + jx =
(1 + u) + jv

(1 − u) − jv
=

((1 + u + jv)(1 − u + jv)

(1 − u)2 + v2

To obtain the relationship between the (r,x) plane and
the (u,v) plane

r =
1 − u2 − v2

(1 − u)2 + v2

x =
v(1 − u) + v(1 + u)

(1 − u)2 + v2

The above equations can be simplified and put into a
nice form
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Completing Your Squares...

If you remember your high school algebra, you can
derive the following equivalent equations

(

u −
r

1 + r

)2

+ v2 =
1

(1 + r)2

(u − 1)2 +

(

v −
1

x

)2

=
1

x2

These are circles in the (u,v) plane! Circles are good!

We see that vertical and horizontal lines in the (r,x)
plane (complex impedance plane) are transformed to
circles in the (u,v) plane (complex reflection coefficient)
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Resistance Transformations

u

r
=
0

r
=
0
.5

r
=
1

r
=
2

v

r=.5 r=1 r=2r=0

r

r = 0 maps to u2 + v2 = 1 (unit circle)

r = 1 maps to (u − 1/2)2 + v2 = (1/2)2 (matched real
part)

r = .5 maps to (u − 1/3)2 + v2 = (2/3)2 (load R less than
Z0)

r = 2 maps to (u − 2/3)2 + v2 = (1/3)2 (load R greater
than Z0)
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Reactance Transformations

x

r

u

x
=
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x
=

1 x
=
2

x

=

-.
5

x
=

-1

x
=
-2

v

x = 1

x = 2

x = -1

x = -2

x = 0

x = ±1 maps to (u − 1)2 + (v ∓ 1)2 = 1

x = ±2 maps to (u − 1)2 + (v ∓ 1/2)2 = (1/2)2

x = ±1/2 maps to (u − 1)2 + (v ∓ 2)2 = 22

Inductive reactance maps to upper half of unit circle

Capacitive reactance maps to lower half of unit circle
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Complete Smith Chart
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Load on Smith Chart

load

First map zL on the Smith Chart as ρL

To read off the impedance on the T-line at any point on
a lossless line, simply move on a circle of constant
radius since ρ(z) = ρLe2jβ
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Motion Towards Generator

Moving towards
generator means
ρ(−`) = ρLe−2jβ`, or
clockwise motion

For a lossy line, this
corresponds to a
spiral motion

We’re back to where
we started when
2β` = 2π, or ` = λ/2

Thus the impedance
is periodic (as we
know)

load

m
ov
em
ent

towards generator
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SWR Circle

Since SWR is a function of |ρ|, a circle at origin in
(u,v) plane is called an SWR circle

S
W

R
C I R C L E

voltage min voltage max

ρL = |ρL|ejθ

ρ = |ρL|ej(θ−2β`)

Recall the voltage max
occurs when the reflected
wave is in phase with the
forward wave, so
ρ(zmin) = |ρL|

This corresponds to the
intersection of the SWR
circle with the positive real
axis

Likewise, the intersection
with the negative real axis
is the location of the voltge
min
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Example of Smith Chart Visualization

Prove that if ZL has an inductance reactance, then the
position of the first voltage maximum occurs before the
voltage minimum as we move towards the generator

A visual proof is easy using Smith Chart

On the Smith Chart start at any point in the upper half
of the unit circle. Moving towards the generator
corresponds to clockwise motion on a circle. Therefore
we will always cross the positive real axis first and then
the negative real axis.
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Impedance Matching Example

Single stub impedance matching is easy to do with the
Smith Chart

Simply find the intersection of the SWR circle with the
r = 1 circle

The match is at the center of the circle. Grab a
reactance in series or shunt to move you there!
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Admittance Chart

Since y = 1/z = 1−ρ
1+ρ , you can imagine that an

Admittance Smith Chart looks very similar

In fact everything is switched around a bit and you can
buy or construct a combined admittance/impedance
smith chart. You can also use an impedance chart for
admittance if you simply map x → b and r → g

Be careful ... the caps are now on the top of the chart
and the inductors on the bottom

The short and open likewise swap positions
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Admittance on Smith Chart

Sometimes you may need to work with both
impedances and admittances.

This is easy on the Smith Chart due to the impedance
inversion property of a λ/4 line

Z ′ =
Z2

0

Z

If we normalize Z ′ we get y

Z ′

Z0

=
Z0

Z
=

1

z
= y
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Admittance Conversion

Thus if we simply rotate π degrees on the Smith Chart
and read off the impedance, we’re actually reading off
the admittance!

Rotating π degrees is easy. Simply draw a line through
origin and zL and read off the second point of
intersection on the SWR circle
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