EECS 217
Lecture 4: Distributed Resonant Circuits

Prof. Niknejad

University of California, Berkeley

University of California, Berkeley



Open Line I/V

o N

# The open transmission line has infinite VSWR and
por, = 1. At any given point along the transmission line

v(z) = V(e 997 4 eIP%) = 2V cos(62)

whereas the current is given by

+ .
i(2) = (e = )
or
_ 94/t
i) = —2Y 7 Gn(8)
A

o |
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Open Line Impedance (I)

-

The impedance at any point along the line takes on a
simple form

N
S
—~
|
QN
~—
|
|

—J Z cot(BL)

This Is a special case of the more general transmission
line equation with Z; = oc.

Note that the impedance is purely imaginary since an
open lossless transmission line cannot dissipate any
power.

We have learned, though, that the line stores reactive
energy in a distributed fashion.

|
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Open Line Impedance (ll)
B o

# A plot of the Input impedance as a function of z Is
shown below

Zin(A/2)
10 [~ , , ,

>

# The cotangent function takes on zero values when G/
approaches 7 /2 modulo 27

o |
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Open Line Impedance (lll)

o N

# Open transmission line can have zero input impedance!

# This is particularly surprising since the short load is in
effect transformed from an open.

# A plot of the voltage/current as a function of z is shown
below.

i(—\/4)

v(—=A/4)

H 2/

|
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Open Line Reactance

¢ < \/4 — capacitor

¢ < A\/4 — capacitive 10
reactance 7.5) é é

¢ = \/4 — short (acts NS
like resonant series

LC circuit) | + +

(> A4butl < \/2— 75 |

Inductive reactance 25 S
h\

And the process re-
peats ...

|
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© o o @

A/2 Transmission Line

-

Plug into the general T-line equation for any multiple of
A2

| 4+ jZptan(—5N/2)
Zin(—mA/2) = Zy Zo + j 25 tan(—BA/2)

BAm/2 = 277”‘77” = Tm
tanmmr =01fme 2
Zin(—=Am[2) = Zo% = Z1,

Impedance does not change ... it's periodic about /2
(not \)

|
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A/4 Transmission Line

-

Plug into the general T-line equation for any multiple of
A\/4

BAm /4 = QTW)‘Tm = 5m

tanm% = oo If m IS an odd integer

Zin(—Am/4) = §—§

A/4 line transforms or “inverts” the impedance of the
load

|
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A/4 Impedance Match

&=

v, ™ Zo = \/RLR,

o

=n,

—F0

2/4

raY
A d
\l
|

# |f the source and load are real resistors, then a
guarter-wave line can be used to match the source and

load iImpedances

# Recall that the impedance looking into the gquarter-wave

line is the “inverse” of the load impedance

Zm(z — —)\/4) —

University of California, Berkeley
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|
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SWR on \/4 Line
-

In this case, therefore, we equate this to the desired
source impedance Z;,, = }Zz—(j = R,

The quarter-wave line should therefore have a
characteristic impedance that is the geometric mean

Zo =V RsRp,
Since Zy # Ry, the line has a non-zero reflection
coefficient
SWR = L= VELE
R; + vV Ry Rs
It also therefore has standing waves on the T-line
The non-unity SWR is given by i}gii

|
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Interpretation of SWR on \/4 Line
-

#® Consider a generic lossless transformer (Ry, > Ry)

# Thus to make the load look smaller to match to the
source, the voltage of the source should be increased in
magnitude

# But since the transformer is lossless, the current will
likewise decrease in magnitude by the same factor

o With the \/4 transformer, the location of the voltage
minimum to maximum is A\ /4 from load (since the load Is
real)

# \oltage/current is thus increased/decreased by a factor
of 1 + |pr| at the load

# Hence the impedance decreased by a factor of

(1+ |pp))? o
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Lossy Transmission Line Attenuation

o N

# The power delivered into the line at a point z is now
non-constant and decaying exponentially

1

+|2
Pav(z) — 2%(7](2)2(2)*)

v
2| Z)?

e 2R (Z())

® Forinstance, if « = .01lm~!, then a transmission line of
length ¢ = 10m will attenuate the signal by 10log(e>*) or

2 dB. At ¢ = 100m will attenuate the signal by 10log(e?*)
or 20 dB.

o |
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Lossy Transmission Line Impedance

o N

# Using the same methods to calculate the impedance for
the low-loss line, we arrive at the following line
voltage/current

v(z) = v+e_7z(1 + pLeQV’Z) — v+e_7’z(1 + pr(2))

vt

i(2) = e (1= pr(2))

® Where p;(z) Is the complex reflection coefficient at
position z and the load reflection coefficient is unaltered
from before

# The input impedance Is therefore

\— Zin(2) = Zo e 1* 4+ pre’”® J

e~ 1" — pre’®
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Lossy T-Line Impedance (cont)

-

Substituting the value of p;, we arrive at a similar
equation (now a hyperbolic tangent)

Z1, + Zytanh(~/f)
Zin(—0) = Z
(=4) "Zo+ 71, tanh (/)

For a short line, if v6¢ < 1, we may safely assume that

Zin(—0L) = Zytanh(y0l) ~ Zyyol

Recall that Zyy = \/Z'/Y'VZ'Y"

As expected, input impedance is therefore the series
impedance of the line (where R = R'6¢ and L = L'§/)

Zin(—60) = Z'60 = R + jwL |
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Low Loss Line

# Foralowloss line, wL' > R and wC’ > @', so the prop.T
constant can be simplified

v =/ (jwl’ + R)(jwC' + G’

R’ G’ R'G’
— OV LIOT 1 — 4
! \/(J”) o (-1 (i +20) * Gorrer)

» Dropping the last term and using /1 +z =~ 1 + 1z for

small «
R/ G’
_  N2T IV S O
v =\ Gw)2Le (1 & (wL’+wC’))

|
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Low Loss Line (cont)

Using the fact that Zy ~ /L’ /C’

The low loss line is therefore dispersionless since « Is
iIndependent of frequency and 5 « w.

The imaginary part of ~ Is identical to a lossless line,
and thus the phase relationship is the same as the
lossless case (quarter wavelength on a lossy line is the
same length as on a lossless line)

For all practical purposes, then, the low loss line
behaves like a lossless line except the wave attenuates

by e~ Q2 J
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Dispersionless Line

o N

® To find the conditions for the transmission line to be
dispersionless in terms of the R, L, C, G, expand

7 = V{wL + R)(juC + &)

R G RG
— W2 LO(1 + —
\/(]w) G+ JwL i jwC i (jw)QLC)

= y/GwpLeva

# Suppose that R/L = G /C and simplify the O term

no14 2, R’
B JwL  (jw)?L?

o |
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Dispersionless Line (ll)

-

For R/L = G /C the propagation constant simplifies
R \* R
O=(1+—— i/
( "‘ij> V= —Jw LO(”;‘TL)
Breaking ~ into real and imaginary components

|C
’}/:R Z—W\/LC:O(‘Fjﬁ

The attenuation constant « is independent of frequency.

For low loss lines, o ~ —Z%

The propagation constant 5 is a linear function of

frequency v J
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Example: IC Resistor

' )
[ ] wwwwwwwwwwwwww |

4 +r r+r 1t 1 1 T

TTTTTTTTTTT

\ n-well )
p-sub

#® The IC resistor shown above iIs common. A reverse
biased diffusion resistor has capacitance to substrate
arising from the reverse biased junction.

# A thin film resistor has capacitance to substrate due to
Its close proximity.

L.o For simplicity, assume the substrate is a perfect ground.J
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Telegrapher’s Equations

o N

# The series impedance per unit length is predominantly
resistive. For all frequencies of interest, wl' <« R’

7! :ij’—I—R' ~ R

# Assuming the conductance per unit is capacitive,
Y’ = jwC’, the propagation constant is given by

) = VIO

# which has a phase of 45°. Likewise, the characteristic
Impedance Is given by

Z/
Zo= 1|2 = \JjoO R
| " .

University of California, Berkeley EECS 217 Lecture 4 — p. 20/39



Resistor Sizing

o N

# The optimal size of the resistor can be analyzed by
noting that R’ = R /W and C" = We/tgep (taep =
depletion region depth). Let C; = esj/t4ep. Then

Y= \/]RDWCQC

# which is independent of the width 1. The impedance,
though, drops with W/

1 | Rp
Z p—
"W JwCly

o |
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Resistance versus W

o N

# For a shorted resistor, the input impedance is given by

1 | R
Lin = Zotanh y{ = W\ Focs tanh (\/jRDwC 6)

#® For a given desired resistance %RD = Ry, we can
substitute for ¢

1 R
Zin = Zoptanhy{ = —
O bty W\ jwC;,

tanh <\/jRDwC &W>
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Plot of Input Impedance
B -

# The plot of | Z;,| for a

il nominally 10 k2 resistor
TS W versus frequency is shown
\\?N sy above.
\\\\\\ # Say that for a thin film
] resistor has Ry = 100Q/0
and

C, = €sio, /to = 3.45x107° F /m?

# The W = 1 um resistor has a relatively flat frequency
response up to 1 GHz, whereas the W = 5 um resistor
rolls off quickly and is about half of its nominal size at
1 GHz.

o |
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.

Impedance versusit’

Zin|  f =2GHz

1000 — —
— N
: \
800 A\
, \
o
, \\ 3
600 \\25
| o\
>\
400 o)o\ N
r Oé/ \~ 1
, ~ - ,
, ~—_ 7
21070 41070 6107 810 0.00001
W

# The variation of the impedance magnitude versus W is
shown above. Larger W resistors have better precision
and matching, but clearly the extra capacitance hurts at
high frequency. J
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Review of Resonance (l)

f.n We'd like to find the impedance of a series resonator T
near resonance Z(w) = jwlL + 5 c + R

#® Recall the definition of the circwt Q)

time average energy stored

@ = wo

energy lost per cycle

# For a series resonator, () = woL/R. For a small
frequency shift from resonance dw < wy

1 1
Z(wo + 0w) = jwoL + jowL + ( ) + R
JwoC
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Review of Resonance (ll)

-

® Which can be simplified using the fact that wL = _1

Z(wo + dw) = j20wL + R

# Using the definition of ()

Z(wo+ o0w) =R (1 +j2Q5—w>

wo

# For a parallel line, the same formula applies to the
admittance

wo

Y (wo + 0w) = G (1 + j2Q5—”)

L.o Where Q = wgC/G J
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A/2 T-Line Resonators (Series)
-

A shorted transmission line of length ¢ has input
Impedance of Z;,, = Zy tanh(v/)

For a low-loss line, Z; I1s almost real
Expanding the tanh term into real and imaginary parts

sinh (2a/) 7 sin(23/0)

tanh(al+730) = cos(2/30) + cosh(2al) +COS(255) + cosh(2af)

Since \gfop = cand ¢ = \y/2 (near the resonant
frequency), we have
Bl =21l /N =2mlf/c=m~+2n0fl/c =7 + Tow/wy

If the lines are low loss, then of <« 1

|
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A\/2 Series Resonance

Simplifying the above relation we come to

Lin = 20 (Ozﬁ —1—]@)

wo

The above form for the input impedance of the series
resonant T-line has the same form as that of the series
LRC circuit

We can define equivalent elements

Req = Zoal = Zpa/2

T20 2
Leq — 2—%

|
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\/2 Series Resonance Q
- -

# The equivalent () factor is given by

g1 ™ _fo

wWoReqCeq a)y 2«

# For alow-loss line, this () factor can be made very large.
A good T-line might have a ¢ of 1000 or 10,000 or more

# |t's difficult to build a lumped circuit resonator with such
a high @ factor

o |
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A/4 T-Line Resonators (Parallel)

o N

# For a short-circuited \/4 line

tanh af 4 j tan 3¢

Zin = Zy tanh )6 = Z
in o tanh(a + 55) 01+jtanﬂ€tanhoz€

# Multiply numerator and denominator by —j cot ¢

1 — 7 tanh o/ cot (G4
Zz'n — ZO :
tanh o — 4 cot B¢

® For/=)/4atw=wyandw = wy + dw

wol  owl m  mow
€ - — —_— e — —_—
g v T v 2 T 20

o |
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A/4 T-Line Resonators (Parallel)
-

® SO cot Bl = —tan 5° 7”5“’ A QZZ"" and tanh o/ ~ o/
7 — 7 1 4+ jabmdw /2wy 20

al + jmow /2wy =l + jmow /2wy

# This has the same form for a parallel resonant RLC
circuit
1

Lin =
" 1/R 4+ 2j6wC
# The equivalent circuit elements are

70 o 1
Req — J Ceq o 4WOZO Leq o w%ceq

o |
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A/4 T-Line Resonators Q Factor
-

# The quality factor is thus

Q =wyRC = — =



T-Line-C Resonator Q Factor
B -

|
-

|

® Often transmission lines are used as resonant elements
along with lumped elements.

# A good example, shown above, is a short section of
transmission line resonating with the input capacitance
of a transistor. For simplicity assume that the lumped
Input capacitance is lossless. What's the the () factor of
the resulting resonant circuit?

o |
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Magnetic Energy Storage

# |t's important to note that () # %ﬁ/a since this only

applies to the transmission line in resonance, when the
magnetic and electric energy are equal on the
transmission line.

#® |n our case, we would like to use the transmission line
as an Inductor, so we will be concerned with the net
magnetic energy on the line. The @ factor is therefore
given by

net energy stored  2wo(W,, — We)
avg. powerloss  Pp+ Pgo

Q) = 2w

# where W, and W, are the average magnetic and
electric energy stored, and Pg represent the “series”
resistive losses and P the “shunt” conductive losses. J
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Inductive/Capacitive Q

o N

# Defining the series inductive and shunt capacitive () we

have
Wi We
— Qg —2 — Do —2 we
Qr = 2w By Qo = 2wy P
can express the overall () as
1 1 1
I — +
Q QL nce
— 1 We L Wm 1
NL = W, nec = W,

o |
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Magnetic/Electric Energy

-

# For a shorted transmission line, under the assumption

-

of low loss, one can show that

W

We ~

Thus we have

University of California, Berkeley

1 LV+2€ . A7l
— sinc | —
2 72 )

1 4
Love (1- s (1))

1 1 1

nL 2sinc(4L) 2

1 1 1
ne 2sinc(dZf) 2 |
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“Shorted” T-Line

For a shorted line, say ¢ < A, then n¢o > n;. For
Instance, If / < 0.1, then nc > 7n;,. The net () of such a
resonant circuit Is therefore Q =~ n;. Q..

This explains why a Si coplanar line is preferred over a
microstrip line in such an application.

Due to the Si substrate losses, the resonant () of the
microstrip is higher. But the inductive @), of the

coplanar line is higher since more magnetic energy can

be stored per unit length. J
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Co-Planar/Microstrip Tradeoff

2_11 ______ _____________ ____________ DD ......... o Nouce that the Capacr“ve QC
T R S S S factor is larger for the

" ............ ______ “ ____________ ............ micrOStrip, Since most Of the
: _______ ’ ________ ____________ fields terminate on the M1
....... ____________ ............ Shleld ground plane.

~ ® The coplanar line, though, has

Teew o 1 ] electric fields that penetrate

s et the substrate and cause loss

L =" | due to the finite conductivity.

e This can be modeled as an ef-

e, fective frequency dependent
S s il o dielectric loss.

5 : : : i
0 10 20 30 4 A0
Fragquancy [GHz

University of California, Berkeley EECS 217 Lecture 4 — p. 38/39




Co-planar/Microstrip Tradeoff (cont)

f.ﬂ The inductive @, Is larger, though, since the width of T
the coplanar line can be made wider. The spacing
predominately controls the impedance of the line.

# On the other hand, for a microstrip line, the spacing
between the signal and ground is fixed, and thus the
Impedance can only be increased by reducing the
conductor width.

For more details:

“Millimeter-Wave CMOS Design”

Doan, C.H.; Emami, S.; Niknejad, A.M.; Brodersen, R.W.,

IEEE Journal of Solid-State Circuits, Volume: 40, Issue: 1, Jan. 2005, Pages:144 - 155

o |
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