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Open Line I/V

The open transmission line has infinite VSWR and
ρL = 1. At any given point along the transmission line

v(z) = V +(e−jβz + ejβz) = 2V + cos(βz)

whereas the current is given by

i(z) =
V +

Z0

(e−jβz − ejβz)

or

i(z) =
−2jV +

Z0

sin(βz)
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Open Line Impedance (I)

The impedance at any point along the line takes on a
simple form

Zin(−`) =
v(−`)

i(−`)
= −jZ0 cot(β`)

This is a special case of the more general transmission
line equation with ZL = ∞.

Note that the impedance is purely imaginary since an
open lossless transmission line cannot dissipate any
power.

We have learned, though, that the line stores reactive
energy in a distributed fashion.
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Open Line Impedance (II)

A plot of the input impedance as a function of z is
shown below
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The cotangent function takes on zero values when β`
approaches π/2 modulo 2π
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Open Line Impedance (III)

Open transmission line can have zero input impedance!

This is particularly surprising since the short load is in
effect transformed from an open.

A plot of the voltage/current as a function of z is shown
below.
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Open Line Reactance

` � λ/4 → capacitor

` < λ/4 → capacitive
reactance

` = λ/4 → short (acts
like resonant series
LC circuit)

` > λ/4 but ` < λ/2 →
inductive reactance

And the process re-
peats ...
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λ/2 Transmission Line

Plug into the general T-line equation for any multiple of
λ/2

Zin(−mλ/2) = Z0

ZL + jZ0 tan(−βλ/2)

Z0 + jZL tan(−βλ/2)

βλm/2 = 2π
λ

λm
2

= πm

tan mπ = 0 if m ∈ Z
Zin(−λm/2) = Z0

ZL

Z0
= ZL

Impedance does not change ... it’s periodic about λ/2
(not λ)
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λ/4 Transmission Line

Plug into the general T-line equation for any multiple of
λ/4

βλm/4 = 2π
λ

λm
4

= π
2
m

tan mπ
2

= ∞ if m is an odd integer

Zin(−λm/4) = Z2

0

ZL

λ/4 line transforms or “inverts” the impedance of the
load
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λ/4 Impedance Match

Rs

Vs RL

λ/4

Z0 =
√

RLRs

If the source and load are real resistors, then a
quarter-wave line can be used to match the source and
load impedances

Recall that the impedance looking into the quarter-wave
line is the “inverse” of the load impedance

Zin(z = −λ/4) =
Z2

0

ZL
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SWR onλ/4 Line

In this case, therefore, we equate this to the desired

source impedance Zin = Z2

0

RL

= Rs

The quarter-wave line should therefore have a
characteristic impedance that is the geometric mean
Z0 =

√
RsRL

Since Z0 6= RL, the line has a non-zero reflection
coefficient

SWR =
RL −

√
RLRs

RL +
√

RLRs

It also therefore has standing waves on the T-line

The non-unity SWR is given by 1+|ρL|
1−|ρL|
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Interpretation of SWR on λ/4 Line

Consider a generic lossless transformer (RL > Rs)

Thus to make the load look smaller to match to the
source, the voltage of the source should be increased in
magnitude

But since the transformer is lossless, the current will
likewise decrease in magnitude by the same factor

With the λ/4 transformer, the location of the voltage
minimum to maximum is λ/4 from load (since the load is
real)

Voltage/current is thus increased/decreased by a factor
of 1 + |ρL| at the load

Hence the impedance decreased by a factor of
(1 + |ρL|)2
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Lossy Transmission Line Attenuation

The power delivered into the line at a point z is now
non-constant and decaying exponentially

Pav(z) =
1

2
< (v(z)i(z)∗) =

|v+|2
2|Z0|2

e−2αz< (Z0)

For instance, if α = .01m−1, then a transmission line of
length ` = 10m will attenuate the signal by 10 log(e2α`) or
2 dB. At ` = 100m will attenuate the signal by 10 log(e2α`)
or 20 dB.
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Lossy Transmission Line Impedance

Using the same methods to calculate the impedance for
the low-loss line, we arrive at the following line
voltage/current

v(z) = v+e−γz(1 + ρLe2γz) = v+e−γz(1 + ρL(z))

i(z) =
v+

Z0

e−γz(1 − ρL(z))

Where ρL(z) is the complex reflection coefficient at
position z and the load reflection coefficient is unaltered
from before

The input impedance is therefore

Zin(z) = Z0

e−γz + ρLeγz

e−γz − ρLeγz
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Lossy T-Line Impedance (cont)

Substituting the value of ρL we arrive at a similar
equation (now a hyperbolic tangent)

Zin(−`) = Z0

ZL + Z0 tanh(γ`)

Z0 + ZL tanh(γ`)

For a short line, if γδ` � 1, we may safely assume that

Zin(−δ`) = Z0 tanh(γδ`) ≈ Z0γδ`

Recall that Z0γ =
√

Z ′/Y ′
√

Z ′Y ′

As expected, input impedance is therefore the series
impedance of the line (where R = R′δ` and L = L′δ`)

Zin(−δ`) = Z ′δ` = R + jωL
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Low Loss Line
For a low loss line, ωL′ � R′ and ωC ′ � G′, so the prop.
constant can be simplified

γ =
√

(jωL′ + R′)(jωC ′ + G′)

γ =

√

(jω)2L′C ′

(

1 − j

(

R′

ωL′
+

G′

ωC ′

)

+
R′G′

(jω)2L′C ′

)

Dropping the last term and using
√

1 + x ≈ 1 + 1

2
x for

small x

γ =
√

(jω)2L′C ′

(

1 − j 1

2

(

R′

ωL′
+

G′

ωC ′

))
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Low Loss Line (cont)

Using the fact that Z0 ≈
√

L′/C ′

γ = α + jβ = 1

2

(

R′

Z0

+ G′Z0

)

+ jω
√

L′C ′

The low loss line is therefore dispersionless since α is
independent of frequency and β ∝ ω.

The imaginary part of γ is identical to a lossless line,
and thus the phase relationship is the same as the
lossless case (quarter wavelength on a lossy line is the
same length as on a lossless line)

For all practical purposes, then, the low loss line
behaves like a lossless line except the wave attenuates
by e−αz
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Dispersionless Line

To find the conditions for the transmission line to be
dispersionless in terms of the R, L, C, G, expand

γ =
√

(jωL′ + R′)(jωC ′ + G′)

=

√

(jω)2LC(1 +
R

jωL
+

G

jωC
+

RG

(jω)2LC
)

=
√

(jω)2LC
√

2

Suppose that R/L = G/C and simplify the 2 term

2 = 1 +
2R

jωL
+

R2

(jω)2L2
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Dispersionless Line (II)

For R/L = G/C the propagation constant simplifies

2 =

(

1 +
R

jωL

)2

γ = −jω
√

LC

(

1 +
R

jωL

)

Breaking γ into real and imaginary components

γ = R

√

C

L
− jω

√
LC = α + jβ

The attenuation constant α is independent of frequency.
For low loss lines, α ≈ − R

Z0
X

The propagation constant β is a linear function of
frequency X
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Example: IC Resistor

n-well

n+

+ –

p-sub

The IC resistor shown above is common. A reverse
biased diffusion resistor has capacitance to substrate
arising from the reverse biased junction.

A thin film resistor has capacitance to substrate due to
its close proximity.

For simplicity, assume the substrate is a perfect ground.
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Telegrapher’s Equations

The series impedance per unit length is predominantly
resistive. For all frequencies of interest, ωL′ � R′

Z ′ = jωL′ + R′ ≈ R′

Assuming the conductance per unit is capacitive,
Y ′ = jωC ′, the propagation constant is given by

γ =
√

jωC ′R′

which has a phase of 45◦. Likewise, the characteristic
impedance is given by

Z0 =

√

Z ′

Y ′
=
√

jωC ′R′
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Resistor Sizing

The optimal size of the resistor can be analyzed by
noting that R′ = R�/W and C ′ = Wε/tdep (tdep =

depletion region depth). Let Cx = εSi/tdep. Then

γ =
√

jR�ωCx

which is independent of the width W . The impedance,
though, drops with W

Z0 =
1

W

√

R�

jωCx
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Resistance versus W

For a shorted resistor, the input impedance is given by

Zin = Z0 tanh γ` =
1

W

√

R�

jωCx
tanh

(

√

jR�ωCx`
)

For a given desired resistance `
W R� = R0, we can

substitute for `

Zin = Z0 tanh γ` =
1

W

√

R�

jωCx
tanh

(

√

jR�ωCx
R0

R�

W

)
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Plot of Input Impedance
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The plot of |Zin| for a
nominally 10 kΩ resistor
versus frequency is shown
above.

Say that for a thin film
resistor has R� = 100 Ω/�
and

Cx = εSiO2
/t0 = 3.45×10−5 F/m2

The W = 1 µm resistor has a relatively flat frequency
response up to 1 GHz, whereas the W = 5 µm resistor
rolls off quickly and is about half of its nominal size at
1 GHz.
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Impedance versusW
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The variation of the impedance magnitude versus W is
shown above. Larger W resistors have better precision
and matching, but clearly the extra capacitance hurts at
high frequency.
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Review of Resonance (I)

We’d like to find the impedance of a series resonator
near resonance Z(ω) = jωL + 1

jωC + R

Recall the definition of the circuit Q

Q = ω0

time average energy stored

energy lost per cycle

For a series resonator, Q = ω0L/R. For a small
frequency shift from resonance δω � ω0

Z(ω0 + δω) = jω0L + jδωL +
1

jω0C

(

1

1 + δω
ω0

)

+ R
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Review of Resonance (II)

Which can be simplified using the fact that ω0L = 1

ω0C

Z(ω0 + δω) = j2δωL + R

Using the definition of Q

Z(ω0 + δω) = R

(

1 + j2Q
δω

ω0

)

For a parallel line, the same formula applies to the
admittance

Y (ω0 + δω) = G

(

1 + j2Q
δω

ω0

)

Where Q = ω0C/G
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λ/2 T-Line Resonators (Series)

A shorted transmission line of length ` has input
impedance of Zin = Z0 tanh(γ`)

For a low-loss line, Z0 is almost real

Expanding the tanh term into real and imaginary parts

tanh(α`+jβ`) =
sinh(2α`)

cos(2β`) + cosh(2α`)
+

j sin(2β`)

cos(2β`) + cosh(2α`)

Since λ0f0 = c and ` = λ0/2 (near the resonant
frequency), we have
β` = 2π`/λ = 2π`f/c = π + 2πδf`/c = π + πδω/ω0

If the lines are low loss, then α` � 1
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λ/2 Series Resonance

Simplifying the above relation we come to

Zin = Z0

(

α` + j
πδω

ω0

)

The above form for the input impedance of the series
resonant T-line has the same form as that of the series
LRC circuit

We can define equivalent elements

Req = Z0α` = Z0αλ/2

Leq =
πZ0

2ω0

Ceq =
2

Z0πω0
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λ/2 Series Resonance Q

The equivalent Q factor is given by

Q =
1

ω0ReqCeq
=

π

αλ0

=
β0

2α

For a low-loss line, this Q factor can be made very large.
A good T-line might have a Q of 1000 or 10,000 or more

It’s difficult to build a lumped circuit resonator with such
a high Q factor
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λ/4 T-Line Resonators (Parallel)

For a short-circuited λ/4 line

Zin = Z0 tanh(α + jβ)` = Z0

tanh α` + j tan β`

1 + j tan β` tanh α`

Multiply numerator and denominator by −j cot β`

Zin = Z0

1 − j tanh α` cot β`

tanh α` − j cot β`

For ` = λ/4 at ω = ω0 and ω = ω0 + δω

β` =
ω0`

v
+

δω`

v
=

π

2
+

πδω

2ω0
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λ/4 T-Line Resonators (Parallel)

So cot β` = − tan πδω
2ω0

≈ −πδω
2ω0

and tanh α` ≈ α`

Zin = Z0

1 + jα`πδω/2ω0

α` + jπδω/2ω0

≈ Z0

α` + jπδω/2ω0

This has the same form for a parallel resonant RLC
circuit

Zin =
1

1/R + 2jδωC

The equivalent circuit elements are

Req =
Z0

α`
Ceq =

π

4ω0Z0

Leq =
1

ω2
0
Ceq
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λ/4 T-Line Resonators Q Factor

The quality factor is thus

Q = ω0RC =
π

4α`
=

β

2α
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T-Line-C Resonator Q Factor

Z0 C Z0

Often transmission lines are used as resonant elements
along with lumped elements.

A good example, shown above, is a short section of
transmission line resonating with the input capacitance
of a transistor. For simplicity assume that the lumped
input capacitance is lossless. What’s the the Q factor of
the resulting resonant circuit?
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Magnetic Energy Storage

It’s important to note that Q 6= 1

2
β/α since this only

applies to the transmission line in resonance, when the
magnetic and electric energy are equal on the
transmission line.

In our case, we would like to use the transmission line
as an inductor, so we will be concerned with the net
magnetic energy on the line. The Q factor is therefore
given by

Q = 2ω0

net energy stored
avg. power loss

=
2ω0(Wm − We)

PR + PG

where Wm and We are the average magnetic and
electric energy stored, and PR represent the “series”
resistive losses and PG the “shunt” conductive losses.
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Inductive/Capacitive Q

Defining the series inductive and shunt capacitive Q we
have

QL = 2ω0

Wm

PR
QC = 2ω0

We

PG

we

can express the overall Q as

1

Q
=

1

ηLQL
+

1

ηCQC

ηL = 1 − We

Wm
ηC =

Wm

We
− 1
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Magnetic/Electric Energy

For a shorted transmission line, under the assumption
of low loss, one can show that

Wm ≈ 1

2

LV +2
`

Z2
0

(

1 + sinc

(

4π`

λ

))

We ≈
1

2
CV +2

`

(

1 − sinc

(

4π`

λ

))

Thus we have

1

ηL
=

1

2 sinc(4π`
λ )

+
1

2

1

ηC
=

1

2 sinc(4π`
λ )

− 1

2
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“Shorted” T-Line

For a shorted line, say ` � λ, then ηC � ηL. For
instance, if ` < 0.1λ, then ηC > 7ηL. The net Q of such a
resonant circuit is therefore Q ≈ ηLQL.

This explains why a Si coplanar line is preferred over a
microstrip line in such an application.

Due to the Si substrate losses, the resonant Q of the
microstrip is higher. But the inductive QL of the
coplanar line is higher since more magnetic energy can
be stored per unit length.
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Co-Planar/Microstrip Tradeoff

Notice that the capacitive QC

factor is larger for the
microstrip, since most of the
fields terminate on the M1
shield ground plane.

The coplanar line, though, has
electric fields that penetrate
the substrate and cause loss
due to the finite conductivity.
This can be modeled as an ef-
fective frequency dependent
dielectric loss.
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Co-planar/Microstrip Tradeoff (cont)

The inductive QL is larger, though, since the width of
the coplanar line can be made wider. The spacing
predominately controls the impedance of the line.

On the other hand, for a microstrip line, the spacing
between the signal and ground is fixed, and thus the
impedance can only be increased by reducing the
conductor width.

For more details:
“Millimeter-Wave CMOS Design”
Doan, C.H.; Emami, S.; Niknejad, A.M.; Brodersen, R.W.,
IEEE Journal of Solid-State Circuits, Volume: 40 , Issue: 1 , Jan. 2005, Pages:144 - 155
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