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The Road to 60 GHz The Road to 60 GHz 
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Challenges and SolutionChallenges and Solution

� Major Challenges:

� High path loss at 60 GHz (relative to 5 GHz)

� Silicon substrate is lossy – high Q passive elements difficult to realize

� CMOS building blocks at 60 GHz

� Need new design methodology for CMOS mm-wave

� Low power baseband architecture for Gbps communication

� Solution:

� CMOS technology is inexpensive and constantly shrinking and operating 

at higher speeds – multiple transceivers can be integrated in a single chip

� Antenna elements are small enough to allow integration into package 

� Beam forming can improve antenna gain, spatial diversity offers 

resilience to multi-path fading

� Due to spatial power combining, individual PAs need to deliver only ~ 

50 mW



Importance of Modeling at 60 GHzImportance of Modeling at 60 GHz

� Transistors

� Compact model not verified near fmax/ft

� Table-based model lacks flexibility

� Parasitics no longer negligible

� Highly layout dependent

� Passives

� Need accurate reactances

� Loss not negligible

� Scalable models desired

� Allows comparison of arbitrary structures

Accurate models required for circuits operating 

near limit of process



Measurement SetupMeasurement Setup



Device Test ChipDevice Test Chip

Test Chip Includes:

� Multi-line TRL 

calibration

� Transmission lines
� Coplanar (CPW)

� Microstrip

� Fingered capacitors
� Coupling

� Supply bypass

� Poly/N-well caps

� Passive filters

� RF NMOS layout 

with varying WF, NF



� Lossy substrate (~10 Ω-cm)

� 6–8 metal levels (copper)

� Chemical mechanical planarization (20-80% metal density)

� Slots required  in metal lines 

� Fill metal in empty areas

� Multiple dielectric layers

Modeling challenges for modern CMOSModeling challenges for modern CMOS



Ring Inductors MeasurementsRing Inductors Measurements
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� Tank resonates at design frequency (56 GHz)

� Tank with DT (deep-trench) array has 

slightly higher Q but lower SRF

� Loaded Q > 20 encouraging measurement



� Microstrip shields EM fields from 
substrate

� CPW can realize higher Q inductors 
needed for tuning out device 
capacitance

� Use CPW

CPW

Microstrip

CoCo--planar (CPW) and planar (CPW) and MicrostripMicrostrip TT--LinesLines



CoCo--planar waveguide layout issuesplanar waveguide layout issues

� Bridges suppress odd-mode propagation

� Keep ground currents balanced

� Advantage of the multi-layer metallization in CMOS

� Signal-to-ground spacing 

� Used to set Z0

� Helps confine EM fields

� Effects of bends are reduced



3030--GHz CoGHz Co--Planar Waveguide FilterPlanar Waveguide Filter

� 30-GHz center frequency

� Composed of scalable transmission lines

� Tests accuracy of transmission line modeling



Filter Measurements vs. ModelsFilter Measurements vs. Models

From the accurate modeling we can conclude

� Negligible coupling between lines

� Bends, junctions, bridges have small effect



Key Passive Devices Key Passive Devices 

Load, Matching

And Bias

Matching

And Bias

Interconnect

� Short transmission lines (T-lines) are used as inductors (to tune out FET 

parasitics)

� T-lines are also used for impedance matching, interconnect, and biasing

� Bypass and coupling capacitors and varactors also characterized at 60 GHz



How fast is standard 130How fast is standard 130--nm CMOS? nm CMOS? 

First what is the best metric, fmax or ft ?

� ft , the unity current gain, is useful for estimating circuit 

bandwidths at low frequency

� Ignores the parasitic resistive losses 

� Doesn’t assume optimal matching

� Affected by wiring capacitance

� fmax , the frequency when the device becomes passive, 

describes the real limitation

� Fundamental property of the device

� Limited by resistive losses that reduce power gain 

� Requires an optimized layout



Layout for Maximizing Layout for Maximizing ffmaxmax

Minimize all resistances

� Rg – use many small parallel gate fingers, <1 µm each

� Rsb, Rdb, Rbb – substrate contacts <1–2 µm from device

� Rs, Rd – don’t use source/drain extensions to reduce L



ffmaxmax vs. finger widthvs. finger width

Increasing gate resistance

Gate Drain

Source

f
max

in GHz



Extended Transistor ModelingExtended Transistor Modeling

� “Lumped”, frequency-independent 
parasitic model is adequate

� Bias-dependent small-signal transistor model for highest accuracy

� Large-signal BSIM3v3 model for nonlinearities and bias dependence



SmallSmall--signal model fitting signal model fitting –– 00––65 GHz65 GHz

Data

Model



VGS = 0.65 V

VDS = 1.2 V

IDS = 30 mA

W/L = 100x1u/0.13u

130130--nm CMOS Device Performancenm CMOS Device Performance



mmmm--Wave BSIM ModelingWave BSIM Modeling

� Compact model with extrinsic 
parasitics

� DC I-V curve matching

� Small-signal S-params fitting

� Large-signal verification

� Challenges:

� Starting with a sample which is 
between typical and fast

� Millimeter-wave large-signal 
measurements 

� Noise

� 3-terminal modeling

Reference:  “Large-Signal Millimeter-Wave CMOS Modeling with BSIM3”, RFIC’04

Sohrab Emami, Chinh H. Doan, Ali M. Niknejad, and Robert W. Brodersen



DC Curve FittingDC Curve Fitting

� I-V measurements were used to extract the core BSIM 
parameters of the fabricated common-source NMOS. 

Measured and modeled IDS vs. VDS. Measured and modeled gm vs. VGS.



Model Extraction: SmallModel Extraction: Small--SignalSignal

� Extensive on-wafer S-parameter 

measurement to 65 GHz over a 

wide bias range.

� Parasitic component values 
extracted using a hybrid 
optimization algorithm in Agilent 
IC-CAP.

� The broadband accuracy of the 
model verifies that using lumped 
parasitics is suitable well into the 

mm-wave region.



LargeLarge--Signal VerificationSignal Verification

� Harmonics power measurement

� Class AB operation 

� Large-Signal amplification at        
60 GHz 



Challenges for 60Challenges for 60--GHz AmplifiersGHz Amplifiers

� Low transistor gain at 60 GHz

� Optimized transistor layout

� Require accurate device models

� Impedance matching networks

� Need low-loss passives

� Scalable models to design complex networks

� Broadband stability

� Miller capacitance

� Bias oscillations

� High output power or low noise



6060--GHz Amplifier SchematicGHz Amplifier Schematic

� 3-stage cascode amplifier design

� Cascode transistors improve isolation, stability

� Input/output matching networks designed to match 50 Ω

� Pads are included as part of amplifier

� Designed using only measured components



6060--GHz Amplifier LayoutGHz Amplifier Layout

Chip size:

1.3 mm x 1.0 mm

Chip size:

1.3 mm x 1.0 mm



4040--GHz Amplifier LayoutGHz Amplifier Layout

Chip size:

1.3 mm x 1.1 mm

Chip size:

1.3 mm x 1.1 mm



4040--GHz and 60GHz and 60--GHz CMOS AmplifiersGHz CMOS Amplifiers

� We have developed a design methodology that gives repeatable results 

for microwave CMOS design

� Power consumption: 36 mW (40 GHz), 54 mW (60 GHz)

18-dB Gain
@ 40 GHz

18-dB Gain
@ 40 GHz

11.5-dB Gain
@ 60 GHz

11.5-dB Gain
@ 60 GHz



6060--GHz Noise Figure and CompressionGHz Noise Figure and Compression

~9 dB NF
@ 60 GHz

~9 dB NF
@ 60 GHz

Pout ~2 dBm
@ 60 GHz

Pout ~2 dBm
@ 60 GHz


