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Power in Fields

From circuit intuition, we know that current times
voltage is power, so we suspect that the product of E

and H should be related to the power in the field. In
fact, the units work out

[E][H] =
V

m

A

m
=

V · A

m2 =
W

m2

We expect that this may represent the energy density of
the field. We need to prove this more rigorously.

In fact, we will demonstrate that the Poynting vector
S = E × H represents the power density of an EM field.
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Poynting Vector

As such, the surface in-
tegral of S should represent the power crossing a surface

∫

S

(E × H)·dS =

∫

V

∇ · (E × H)dV

V

dS

Note that the direction of S represents the direction of
power flow. The magnitude S is the strength of the
power flow.
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Poynting’s Theorem

Let’s work with the divergence term

∇ · (E × H) = H · (∇× E) − E · (∇× H)

= H · −∂B

∂t
− E · ∂D

∂t
− E · J

H · ∂B

∂t
= H ·

(

∂µH

∂t

)

=
1

2

∂µH · H
∂t

=
1

2

∂µ|H|2
∂t

E · ∂D

∂t
= E ·

(

∂ǫE

∂t

)

=
1

2

∂ǫE · E
∂t

=
1

2

∂ǫ|E|2
∂t

University of California, Berkeley EECS 217 Lecture 2 – p. 4/28



Poynting’s Theorem

Collecting terms we have shown that

E · J = − ∂

∂t

(

1

2
µ|H|2

)

− ∂

∂t

(

1

2
ǫ|E|2

)

−∇ · (E × H)

Applying the Divergence Theorem we have
∫

V
E · JdV = − ∂

∂t

∫

V

(

1

2
µ|H|2 +

1

2
ǫ|E|2

)

dV −
∫

S
E × HdV

power
dissipated in

volume V (heat)

=
rate of change

of energy
storage in
volume V

−
a surface

integral over the
volume of

E × H
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Interpretation of the Poynting Vector

We now have a physical interpretation of the last term in
the above equation. By the conservation of energy, it
must be equal to the energy flow into or out of the
volume

We may be so bold, then, to interpret the vector
S = E × H as the energy flow density of the field

While this seems reasonable, it’s important to note that
the physical meaning is only attached to the integral of
S and not to discrete points in space

University of California, Berkeley EECS 217 Lecture 2 – p. 6/28



Complex Poynting Theorem

We derived the Poynting Theorem for general
electric/magnetic fields. We’d like to derive the Poynting
Theorem for time-harmonic fields.

We can’t simply take our results and simply transform
∂
∂t → jω. This is because the Poynting vector is a
non-linear function of the fields.

Let’s start from the beginning

∇× E = −jωB

∇× H = jωD + J = (jωǫ + σ)E
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Complex Poynting Theorem (II)

Using our knowledge of circuit theory, P = V × I∗, we
compute the following quantity

∇ · (E × H
∗) = H

∗ · ∇ × E − E · ∇ × H
∗

∇ · (E × H
∗) = H

∗ · (−jωB) − E · (−jωD
∗ + J

∗)

Applying the Divergence Theorem
∫

V
∇ · (E × H

∗)dV =

∮

S
(E × H

∗) · dS

∮

S
(E×H

∗) ·dS = −
∫

V
E ·J∗dV +

∫

V
jω(E ·D∗−H

∗ ·B)dV
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Complex Poynting Theorem (III)

Let’s define σeff = ωǫ′′ + σ, and ǫ = ǫ′. Since most
materials are non-magnetic, we can ignore magnetic
losses
∫

S
(E×H

∗)·dS = −
∫

V
σE·D∗dV −jω

∫

V
(µH

∗ · H − ǫE · E∗) dV

Notice that the first volume integral is a real number
whereas the second volume integral is imaginary

ℜ
(

∮

S
E × H

∗ · dS

)

= −2

∫

V
PcdV

ℑ
(

∮

S
E × H

∗ · dS

)

= −4ω

∫

V
(wm − we)dV
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Complex Poynting Vector

Let’s compute the average vector S

S = ℜ
(

Eejωt
)

×ℜ
(

Hejωt
)

First observe that ℜ(A) = 1
2(A + A

∗), so that

ℜ(G) ×ℜ(F) =
1

2
(G + G

∗) × 1

2
(F + F

∗)

=
1

4
(G × F + G × F

∗ + G
∗ × F + G

∗ × F
∗)

=
1

4
[(G × F

∗ + G
∗ × F) + (G × F + G

∗ × F
∗)]

=
1

2
ℜ (G × F

∗ + G × F)
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Average Complex Poynting Vector

Finally, we have computed the complex Poynting vector
with the time dependence

S =
1

2
ℜ

(

E × H
∗ + E × He2jωt

)

Taking the average value, the complex exponential
vanishes, so that

Sav =
1

2
ℜ (E × H

∗)

We have thus justified that the quantity S = E × H
∗

represents the complex power stored in the field.
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Impedance and Power

The circuit concept of impedance can be stated in
terms of power

Zin =
V

I
=

V · I∗
|I|2 =

P
1
2 |I|2

= R + jX

Applying Poynting’s Thm to the “black box”, we can
write this as

Zin =
P0 + Pℓ + 2jω(Wm − We)

1
2 |I|2
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Resistance and Reactance

Note that the resistive component has a radiation term,
an ohmic loss term, and possibility a dielectric or
permeability loss term

R =
P0 + Pℓ

1
2 |I|2

The reactance is positive if Wm > We, and negative
otherwise

X =
2ω(Wm − We)

1
2 |I|2
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Quality Factor

The quality factor for a “black box” (usually resonator) is
defined as follows

Q = 2π
Peak Energy Stored

Energy Loss Per Cycle

The denominator can be reformulated in terms of the
average power loss to give

Q = ω
Peak Energy Stored

Pℓ

From Poynting’s Thm, the net stored energy is given by
Wm − We, so we may be tempted to write

Q
?
= ω

Wm − We

Pℓ
=

1

2

ℑ(Zin)

ℜ(Zin)
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Q-Factor Continued

But the peak energy is different from the net energy. In
a resonator, the peak energy is actually twice the
maximum energy stored in either the inductor or the
capacitor (see problems), so we have

Q = ω
2W peak

m

Pℓ
= ω

2W peak
e

Pℓ
= ω

|W peak
m | + |W peak

e |
Pℓ

For a single one-port element not in resonance, one
often defines the Q factor as

Q =
ℑ(Zin)

ℜ(Zin)

We see that this is correct under the assumption that
the one-port forms a resonant circuit!
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Properties of Conductors

It’s interesting to observe that for a conductor, Ohm’s
law implies the absence of “free” charge

∇× H = J + jωD = σE + jωǫE = (σ + jωǫ)E

Since the divergence of the curl of any vector is zero

∇ · (∇× H) ≡ 0 = (σ + jωǫ)∇ · E

that implies that ∇ · D = ρ = 0, or ρ = 0.

Even though current is charge in motion, in steady-state
the net charge for any macroscopic region must be zero
in a conductor. This condition is satisfied on a time
scale of the relaxation time t ∼ ǫ/σ.
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Definition of a Good Conductor

A good conductor is defined as a material where
displacement current is negligible in comparison with
conduction current.

For most good conductors, this is true at microwave
frequencies.

For example, for Al at 10 GHz, σ ≈ 4 × 107 S/m, where as
ωǫ < 10 S/m.

Lightly doped Si, with σ = 10 S/m, acts like a poor
conductor at this frequency.
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EM Fields Inside Good Conductor

Helmholtz’ equations for a good conductor is given by

∇×∇× E = ∇(∇ · E) −∇2
E = −jωµ∇× H

We see that by Ohm’s law, the first term is zero, and for
a good conductor ∇× H = σE, so

∇2
E = jωµσE

It’s easy to show the same equation is satisfied by H

and J.
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Semi-Infinite Conductor
For a semi-infinite conductor, assume a uniform field E0

impinges on the surface of the conductor. By symmetry,
the wave equation is one-dimensional

∂2Ez

∂x2
= jωµσEz = τ2Ez

τ =
√

jωµσ =
1 + j√

2

√
ωµσ =

1 + j

δ

The general solution for the field is simply

Ez = C1e
−τx + C2e

τx

Clearly, C2 ≡ 0 and C1 = E0 to satisfy the boundary
conditions.

Ez = E0e
−x/δejx/δ
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Semi-Infinite Conductor (cont)

The parameter δ, also
called the skin depth,
determines the
penetration depth of
the field

δ =

√

2

ωµσ
=

1√
πfµσ

E0

Ez(x)

e−x/δ

x̂

For Al at 10 GHz, δ ≈ 0.4 µm. Thus the fields decays
rapidly as we enter the conductor. Since J ∝ E, the
current density likewise drops and essentially flows on
the “skin” of the conductor.
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Internal Impedance of Plane (cont)

The total current flowing past a unit width of conductor
is given by

Jsz =

∫

∞

0
Jzdx =

∫

∞

0
J0e

−τxdx =
J0δ

1 + j

At the surface, Ez0 = J0/σ. The internal impedance for
a unit length and width is defined as

Zs =
EZ0

Jsz
=

1 + j

σδ
= Rs + jωLi
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Surface Impedance

The surface resistance Rs can be interpreted as the
loss due to uniform current flow over a thickness δ of
the top of the conductor

Rs =
1

σδ
=

√

πfµ

σ

Also, the conductor appears inductive with ωLi = Rs.

It can be shown through Poynting’s Thm that the power
loss into the conductor is given by

Pℓ = 1
2ℜ(ZsJsJ

∗

s ) = 1
2Rs|Js|2
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Round Wires

r0

Hφ

Ez

For a long round wire, the current Jz is invariant with z
and the angle θ as shown. Therefore, the Helmholtz eq.
simplifies

∇2
J = jωµσJ = τ2

J

∂2Jz

∂r2
+

1

r

∂Jz

∂r
+ τ2Jz = 0
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Wire Solution

Two linearity independent solutions are the Bessel
function and the Hankel function of the first kind

Jz = AJ0(τr) + BH
(1)
0 (τr)

Since the Hankel function has a singularity at r = 0, it
cannot be a solution. Normalizing to the current at the
surface of the wire

Jz =
σE0

J0(τr0)
J0(τr)
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Current Density
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A plot of the current density in the wire is shown above.
In the plot, a Cu wire with 1 mm diameter is used.

Note that at low frequencies the current is essentially
uniform. At high frequency, though, the current decays
exponentially as we penetrate the conductor.
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Large Radius Limit/Impedance of Wire

In the limit that the radius is large, or equivalently
r0/δ ≫ 1, then the wire should behave like our plane
conductor. In fact,

| Jz

σE0
| ≈ e−(r0−r)/δ

The impedance of a round wire can be computed by
noting that only Ez and Hφ are present. Furthermore,
we have

∮

H · dℓ = I = 2πr0Hφ

By ∇× E = −jωµH, it’s easy to show that

Hφ =
1

jωµ

∂Ez

∂r
University of California, Berkeley EECS 217 Lecture 2 – p. 26/28



Impedance of Round Wire

Using Ez = Jz/σ = E0J0(τr)/J0(τr0), the magnetic field
is given by

Hφ =
E0τ

jωµ

J ′

0(τr)

J0(τr0)

Recall that J ′

0(x) = −J1(x). Solving for the current

I =
2πr0σE0

τ

J1(τr0)

J0(τr0)

Finally we can write the internal impedance of the wire

Zi =
Ez(r0)

I
=

τJ0(τr0)

2πr0σJ1(τr0)
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Low/High Frequency Limit

In the low frequency limit, the internal impedance of the
wire reduces to

Zi ≈
1

πr2
0σ

[

1 +
1

48

(r0

δ

)2
]

+ jω
µ

8π

The real part corresponds to a correction to the DC
resistance of the wire (per unit length). The imaginary
term corresponds exactly to the static internal
inductance of the wire.

As expected, the high frequency limit matches the
analysis for the semi-infinite plane

Zi =
(1 + j)Rs

2πr0
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