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Mason’s Invariant U Function

• Mason discovered the function U given by

U =
|k21 − k12|

2

4(<(k11)<(k22) − <(k12)<(k21))

• For the hybrid matrix formulation (H or G), the U function is given by

U =
|k21 + k12|

2

4(<(k11)<(k22) + <(k12)<(k21))

• where kij are the two-port Y or Z parameters.

• This function is invariant under lossless reciprocal embeddings. Stated differently,
any two-port can be embedded into a lossless and reciprocal circuit and the
resulting two-port will have the same U function.

• This is a very important property, because this invariant property does not depend
on any lossless matching circuitry that we employ before or after the two-port, or
any lossless feedback. What does U signify?
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Properties of U
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• The invariant property is shown above. The U of the original two-port is the same
as Ua of the overall two-port when a four port lossless reciprocal four-port is
added.

• The U function has several important properties:

1. If U > 1, the two-port is active. Otherwise, if U ≤ 1, the two-port is passive.

2. U is the maximum unilateral power gain of a device under a lossless
reciprocal embedding.

3. U is the maximum gain of a three-terminal device regardless of the common
terminal.
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Invariance of U

• With regards to the previous diagram, any lossless reciprocal embedding can be
seen as an interconnection of the original two-port to a four-port, with the following
block admittance matrix  

Ia

−I

!

=

 

Y 0
11 Y 0

12

Y 0
21 Y 0

22

! 
Va

V

!
• Note that Yij is a 2 × 2 imaginary symmetric sub-matrix

Y 0
jk = jBjk

Bjk = BT
kj

• Since I = Y V , we can solve for V from the second equation

−I = Y 0
21Va + Y 0

22V = −Y V

V = −(Y + Y 0
22)

−1Y 0
21Va
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U Invariance (cont)

• From the first equation we have the composite two-port matrix

Ia = (Y 0
11 − Y 0

12(Y + Y 0
22)−1Y 0

21)Va = YaVa

• By definition, the U function is given by

U =
det(Ya − Y T

a )

det(Ya + Y ∗
a )

• Note that Ya can be written as

Ya = jB11 − jB12(Y + jB22)−1jBT
12

Ya = jB11 + B12(Y + jB22)−1BT
12

• Focus on the denominator of U

Ya + Y ∗
a = B12(W−1 + (W ∗)−1)BT

12

• where W = Y + Y 0
22 = Y + jB22.
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Invariance (cont)

• Factoring W−1 from the left and (W ∗)−1 from the right, we have

= B12W−1(W ∗ + W )(W ∗)−1BT
12

• But W + W ∗ = Y + Y ∗ resulting in

Ya + Y ∗
a = B12W−1(Y + Y ∗)(W ∗)−1BT

12

• In a like manner, one can show that

Ya − Y T
a = B12W−1(Y T − Y )(W ∗)−1BT

12

• Taking the determinants and ratios

det(Ya + Y ∗
a ) =

(det B12)2 det(Y + Y ∗)

(det W )2

det(Ya − Y T
a ) =

(det B12)2 det(Y T − Y )

(det W )2

U =
det(Ya − Y T

a )

det(Ya + Y ∗
a )

=
det(Y − Y T )

det(Y + Y ∗)
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Maximum Unilateral Gain

yα

yf

[

Y11 Y12

Y21 Y22

]

• Consider the above feedback structure where yf and yα are lossless reactances.
We can derive the overall two-port equations by a cascade connection followed by
a shunt connection of two-ports

Ya =
yα

yα + y22

"
y11 + ∆y/yα y12

y21 y22

#
+

"
yf −yf

−yf yf

#
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Unilaterization

• To unilaterize the device, we select

yf =
y12yα

y22 + yα

• We can solve for bα and bf

bf = =(y12) −
<(y12)

<(y22)
=(y22)

bα = bf

<(y22)

<(y12)

• It can be shown that the overall Ya matrix is given by

Ya =
j=(y∗

22y12)

y12<(y22)

"
y11 + y12 − j

∆y<(y12)

=(y∗

22
y12)

0

y21 − y12 y22 + y12

#
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Unilaterized Two-Port

Ya,11 Ya,21V1 Ya,22

+

V1

−

• The two-port equivalent circuit under unilaterization is shown above. Notice now
that the maximum power gain of this circuit is given by

GU,max =
|Ya21

|2

4<(Ya11
)<(Ya22

)
= Ua

• Thus we can attribute physical significance to Ua as the maximum unilateral gain.
Furthermore, due to the invariance of U , Ua = U for the original two-port network.

• It’s important to note that any unilaterization scheme will yield the same maximum
power! Thus U is a good metric for the device.
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Gain Plots
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• U is often used as a metric for a two-port device. It represents the maximum gain
that the device can deliver if we use lossless reciprocal embeddings to unilaterize
the device. U is also a good metric for characterizing a three terminal device with a
common-terminal, such as a transistor.

• U is invariant to the common terminal, so a common-gate amplifier has the same
U as a common-source amplifier.

• In the figure above, the device GMSG is plotted for low frequencies where K < 1.
At the breakpoint, K > 1 and the device is unconditionally stable and thus Gmax

is plotted. Note that the U curve is always larger than Gmax but both curves cross
0 dB together. At this point, the fmax of the device, the two-port becomes passive.
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Stability Examples

Cgs gmvgs ro

Cgd

+

vgs

−

• A simple equivalent circuit for a FET without any feedback is of course absolutely
stable if the resistors of the model are positive. The Z matrix for the circuit is given
by

Z =

"
1

jωCgs
0

−gmro

jωCgs
ro

#
• Since Z12 = 0, the stability factor K = ∞

K =
2<(Z11)<(Z22) −<(Z12Z21)

|Z12Z21|
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Inductive Degeneration

Cgs gmvgs ro

Cgd

+

vgs

−

Ls

• Although Z12 ≈ 0 for a FET at low frequency, the input impedance is purely
capacitive. To introduce a real component, inductive degeneration is commonly
employed. The Z matrix for the inductor is simply

Z = jωLs

"
1 1

1 1

#
• Adding the Z matrix (due to series connection)

Z =

"
jωLs + 1

jωCgs
jωLs

jωLs − gmro

jωCgs
ro + jωLs

#
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Inductive Degen (cont)

• This feedback introduces a Z12 and thus the stability must be carefully examined

K =
2 · 0 · ro −

�

−ω2L2
s − gmLsro

Cgs

�
ω2L2

s + gmroLs

Cgs

= 1

• We see that this circuit is unconditionally stable. More importantly, the stability
factor is frequency independent. In reality parasitics can destabilize the transistor.

• The maximum gain is thus given by

Gmax =

����Z21

Z12

���� �K −
p

K2 − 1

�
=

����Z21

Z12

����

=
ωLs + gmro

ωCgs

ωLs

= 1 +
gmro

ω2LsCgs

= 1 +

�
ωT

ω0

�2 � ro

ωT Ls

�

• It’s easy to show that the synthesize real input resistance is ωT Ls, and so the last
term is the ratio of ro/RS under matched conditions.
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Capacitive Degeneration

• The Z matrix for capacitive degeneration is given by

Z =

"

1
jωCs

+ 1
jωCgs

1
jωCs

1
jωCs

− gmro

jωCgs
ro + 1

jωCs

#
• The stability factor is given by

K =
2 · 0 · ro −

�
gmro

ω2CsCgs
− 1

ω2C2
s

���� gmro

ω2CsCgs
− 1

ω2C2
s

���
• Note this is simply

K =
−a + b

|a − b|
=

(
b−a
a−b

< 0 a > b
b−a
b−a

= 1 b < a

• The condition for stability is therefore

gmro

Cgs

>
1

Cs
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Range of K

• So far we have dealt with K > 0. Suppose that |∆| > 1. We know that for
0 < K < 1 the two-port is conditionally stable. In other words, the stability circle
intersects with the unit circle with the overlap (usually) corresponding to the
unstable region. Instability can also occur if K > 1 and |∆| > 1, but this is less
common (occurs with FB).

• On the other hand, if −1 < K < 0, one can show graphically that the entire unit
circle on the Smith Chart is unstable. In other words, the stability circle does not
intersect with the unit circle or the instability circle contains the entire circle.
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Resistive Degeneration

• Resistive degeneration is commonly employed to stabilize the bias point of a
transistor. The Z matrix is given by

Z =

"

Rs + 1
jωCgs

Rs

Rs − gmro

jωCgs
ro + Rs

#
Rs

• The K factor is computed as before

K =
2Rs(ro + Rs) − R2

s

Rs
r

R2
s +

g2
mr2

o

ω2C2
gs

• At low frequencies, we have

K =
2ro + Rs

gmro

ωCgs

≈
2ωCgs

gm

=
2ω

ωT

< 1
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Shunt Feedback

• Shunt feedback is a common broadband matching approach. Now working with
the Y matrix of the transistor (simplified as before)

Yfet =

"

jωCgs 0

gm Go + jωCds

# Rf

• The feedback element has a Y matrix

Yf = Gf
"

+1 −1

−1 +1

#
• And thus the overall amplifier

Y =
"

Gf + jωCgs −Gf

gm − Gf Gf + Go + jωCds

#
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Shunt Feedback (cont)

• The stability factor for the shunt feedback amplifier is given by

K =
2Gf (Go + Gf ) − Gf (Gf − gm)

Gf |gm − Gf |

• Suppose that gmRf > 1

=
gm + Gf

gm − Gf

=
gmRf + 1

gmRf − 1
> 1

• The choice of Rf and gm is governed by the current consumption, power gain,
and impedance matching. For a bi-conjugate match

Gmax =
����Y21

Y12

���� �K −

p
K2 − 1

�

=
gm − Gf

Gf

0@�gmRf + 1

gmRf − 1

�
−

s�
gmRf + 1

gmRf − 1

�2

− 1

1A =

�

1 −

p

gmRF

�2
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Shunt Feedback Input Admittance

• The input admittance is calculated as follows

Yin = Y11 −
Y12Y21

Y22 + YL

= jωCgs + Gf −
−Gf (gm − Gf )

Go + Gf + GL + jωCds

= jωCgs + Gf +
Gf (gm − Gf )(Go + Gf + GL − jωCds

(Go + Gf + GL)2 + ω2C2
ds

• At lower frequencies, ω < 1
CdsRf ||RL

we have (neglecting Go)

<(Yin) = Gf +
Gf (gm − Gf )

Gf + GL

=
1 + gmRL

RF + RL

=(Yin) = ω

0@Cgs −
Cds

1 +
Rf

RL

1A
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