EECS 217

Lecture 18: Two-Port Power Gain

Prof. Niknejad

University of California, Berkeley

Two-Port Power and Scattering Parameters

•The power flowing into ^a two-port can be represented by

$$
P_{in} = \frac{|V_1^+|^2}{2Z_0} (1 - |\Gamma_{in}|^2)
$$

•The power flowing to the load is likewise given by

$$
P_L = \frac{|V_2^-|^2}{2Z_0} (1 - |\Gamma_L|^2)
$$

 \bullet • We can solve for V_1^+ i_1^+ using circuit theory

$$
V_1^+ + V_1^- = V_1^+(1 + \Gamma_{in}) = \frac{Z_{in}}{Z_{in} + Z_S}V_S
$$

 \bullet In terms of the input and source reflection coefficient

$$
Z_{in} = \frac{1 + \Gamma_{in}}{1 - \Gamma_{in}} Z_0
$$

$$
Z_S = \frac{1 + \Gamma_S}{1 - \Gamma_S} Z_0
$$

Two-Port Incident Wave

• Solve for
$$
V_1^+
$$

$$
V_1^+(1+\Gamma_{in}) = \frac{V_S(1+\Gamma_{in})(1-\Gamma_S)}{(1+\Gamma_{in})(1-\Gamma_S)+(1+\Gamma_S)(1-\Gamma_{in})}
$$

$$
V_1^+ = \frac{V_S}{2} \frac{1-\Gamma_S}{1-\Gamma_{in}\Gamma_S}
$$

 \bullet The voltage incident on the load is given by

$$
V_2^- = S_{21}V_1^+ + S_{22}V_2^+ = S_{21}V_1^+ + S_{22}\Gamma_LV_2^-
$$

$$
V_2^- = \frac{S_{21}V_1^+}{1 - S_{22}\Gamma_L}
$$

$$
P_L = \frac{|S_{21}|^2 |V_1^+|^2}{|1 - S_{22}\Gamma_L|^2} \frac{1 - |\Gamma_L|^2}{2Z_0}
$$

Operating Gain and Available Power

• The operating power gain can be written in terms of the two-port s-parameters andthe load reflection coefficient

$$
G_p = \frac{P_L}{P_{in}} = \frac{|S_{21}|^2 (1 - |\Gamma_L|^2)}{|1 - S_{22} \Gamma_L|^2 (1 - |\Gamma_{in}|^2)}
$$

 \bullet **•** The available power can be similarly derived from V_1^+ 1

$$
P_{avs} = P_{in}|_{\Gamma_{in} = \Gamma_S^*} = \frac{|V_{1a}^+|^2}{2Z_0} (1 - |\Gamma_S^*|^2)
$$

$$
V_{1a}^{+} = V_1^{+}\Big|_{\Gamma_{in} = \Gamma_S^*} = \frac{V_S}{2} \frac{1 - \Gamma_S^*}{1 - |\Gamma_S|^2}
$$

$$
P_{avs} = \frac{|V_S|^2}{8Z_0} \frac{|1 - \Gamma_S|^2}{1 - |\Gamma_S|^2}
$$

Transducer Gain

 \bullet The transducer gain can be easily derived

$$
G_T = \frac{P_L}{P_{avs}} = \frac{|S_{21}|^2 (1 - |\Gamma_L|^2)(1 - |\Gamma_S|^2)}{|1 - \Gamma_{in} \Gamma_S|^2 |1 - S_{22} \Gamma_L|^2}
$$

- \bullet Note that as expected, G_T is a function of the two-port s-parameters and the load and source impedance.
- \bullet If the two port is connected to a source and load with impedance Z_0 , then we have $\Gamma_L = \Gamma_S = 0$ and

$$
G_T = |S_{21}|^2
$$

Unilateral Gain

•If $S_{12} \approx 0$, we can simplify the expression by just assuming $S_{12} = 0$. This is the unilateral assumation *unilateral* assumption

$$
G_{TU} = \frac{1 - |\Gamma_S|^2}{|1 - S_{11}\Gamma_S|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2} = G_S |S_{21}|^2 G_L
$$

- • The gain partitions into three terms, which can be interpreted as the gain from thesource matching network, the gain of the two port, and the gain of the load.
- \bullet • In reality the source/load matching network are passive and hopefully lossless, so the power gain is ¹ or less, but by virtue of the matching network we can changethe gain of the two-port.

Maximum Unilateral Gain

 \bullet **• We know that the maximum gain occurs for the biconjugate match**

$$
\Gamma_S = S_{11}^*
$$

\n
$$
\Gamma_L = S_{22}^*
$$

\n
$$
G_{S,max} = \frac{1}{1 - |S_{11}|^2}
$$

\n
$$
G_{L,max} = \frac{1}{1 - |S_{22}|^2}
$$

\n
$$
G_{TU,max} = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}
$$

 \bullet Note that if $|S_{11}| = 1$ of $|S_{22}| = 1$, the maximum gain is infinity. his is the unstable case since $\left|S_{ii}\right|>1$ is potentially unstable.

Ideal MOSFET

• The AC equivalent circuit for ^a MOSFET at low to moderate frequencies is shownabove. Since $|S_{11}|=1$, this circuit has infinite power gain. This is a trivial fact since the gate capacitance cannot dissipate power whereas the output can deliverreal power to the load.

Real MOSFET

 \bullet ^A more realistic equivalent circuit is shown above. If we make the unilateral assumption, then the input and output power can be easily calculated. Assume weconjugate match the input/output

$$
P_{avs} = \frac{|V_S|^2}{8R_i}
$$

$$
P_L = \Re(\frac{1}{2}I_LV_L^*) = \frac{1}{2}\left|\frac{g_mV_1}{2}\right|^2 R_{ds}
$$

$$
G_{TU,max} = g_m^2 R_{ds} R_i \left|\frac{V_1}{V_S}\right|^2
$$

Real MOSFET (cont)

 \bullet At the center resonant frequency, the voltage at the input of the FET is given by

$$
V_1 = \frac{1}{j\omega C_{gs}} \frac{V_S}{2R_i}
$$

$$
G_{TU,max} = \frac{R_{ds}}{R_i} \frac{(g_m/C_{gs})^2}{4\omega^2}
$$

 \bullet \bullet This can be written in terms of the device unity gain frequency f_T

$$
G_{TU,max} = \frac{1}{4} \frac{R_{ds}}{R_i} \left(\frac{f_T}{f}\right)^2
$$

 \bullet The above expression is very insightful. To maximum power gain we shouldmaximize the device f_T and minimize the input ressitance while maximizing the output resistance.

Design for Gain

- \bullet So far we have only discussed power gain using bi-conjugate matching. This is possible when the device is unconditionally stable. In many case, though, we'd liketo design with ^a potentially unstable device.
- \bullet Moreover, we would like to introduce more flexibility in the design. We can trade off gain for
	- bandwidth
	- noise
	- **•** gain flatness
	- •linearity
	- \bullet etc.
- \bullet We can make this tradeoff by identifying ^a range of source/load impedances that can realize ^a given value of power gain. While maximum gain is acheived for ^a single point on the Smith Chart, we will find that ^a lot more flexibility if we back-off from the peak gain.

Unilateral Design

- \bullet No real transistor is unilateral. But most are predominantly unilateral, or else weuse cascades of devices (such as the cascode) to realize such ^a device.
- \bullet **The unilateral figure of merit can be used to test the validity of the unilateral** assumption

$$
U_m = \frac{|S_{12}|^2 |S_{21}|^2 |S_{11}|^2 |S_{22}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}
$$

•It can be shown that the transducer gain satisfies the following inequality

$$
\frac{1}{(1+U)^2} < \frac{G_T}{G_{TU}} < \frac{1}{(1-U)^2}
$$

 \bullet Where the actual power gain G_T is compared to the power gain under the unilateral assumption G_{TU} . If the inequality is tight, say on the order of $0.1\,{\rm dB},$ then the amplifier can be assumed to be unilateral with negligible error.

Gain Circles

•We now can plot gain circles for the source and load. Let

$$
g_S = \frac{G_S}{G_{S,max}}
$$

$$
g_L = \frac{G_L}{G_{L,max}}
$$

•By definition, $0 \le g_S \le 1$ and $0 \le g_L \le 1$. One can show that a fixed value of g_S
represents a similar as the Γ , plane represents a circle on the Γ_S plane

$$
\left|\Gamma_S - \frac{S_{11}^* g_S}{|S_{11}|^2 (g_S - 1) + 1}\right| = \left|\frac{\sqrt{1 - g_S}(1 - |S_{11}|^2)}{|S_{11}|^2 (g_S - 1) + 1}\right|
$$

 \bullet • More simply, $|\Gamma_S - C_S| = R_S$. A similar equation can be derived for the load. Note that for $g_S = 1, \, R_S = 0,$ and $C_S = S^*_{11}$ corresponding to the maximum gain.

Gain Circles (cont)

• \bullet All gain circles lie on the line given by the angle of S^*_{ii} value of source/load reflection coefficient to acheive the desired gain. To minimize $_{ii}^{\ast}.$ We can select any desired the impedance mismatich, and thus maximize the bandwidth, we should select ^apoint closes to the origin.

Extended Smith Chart

• For $|\Gamma| > 1$, we can still employ the Smith Chart if we make the following mapping. The reflection coefficient for ^a negative resistance is given by

$$
\Gamma(-R+jX) = \frac{-R+jX - Z_0}{-R+jX + Z_0} = \frac{(R+Z_0) - jX}{(R-Z_0) - jX}
$$

$$
\frac{1}{\Gamma^*} = \frac{(R - Z_0) + jX}{(R + Z_0) + jX}
$$

• We see that Γ can be mapped to the unit circle by taking $1/\Gamma^*$ and reading the resistance value (and noting that it's actually negative).

Potentially Unstable Unilateral Amplifier

 \bullet **•** For a unilateral two-port with $|S_{11}| > 1$, we note that the input impedance has a negative real part. Thus we can still design ^a stable amplifier as long as the sourceresistance is larger than $\Re(Z_{in})$

$$
\Re(Z_S) > |\Re(Z_{in})|
$$

•The same is true of the load impedance if $|S_{22}| > 1$. Thus the design procedure is identical to before as long as we avoid source or load reflection coefficients withreal part less than the critical value.

Pot. Unstable Unilateral Amp Example

- •Consider a transistor with the following S -Parameters
	- $S_{11} = 2.02\angle -130.4^{\circ}$ $S_{22} = 0.50\angle -70^{\circ}$ $S_{12} = 0$ $S_{21} = 5.00\angle 60^{\circ}$

- •Since $|S_{11}| > 1$, the amplifier is potentially unstable. Webegin by plotting $1/S^\ast_{11}$ to the negative real input $_{11}^{*}$ to find resistance.
- • Now any source inside thiscircle is stable, since $\Re(Z_S) > \Re(Z_{in}).$
- • We also draw the source gaincircle for $G_S = 5\,\text{dB}$.

Amp Example (cont)

•The input impedance is read off the Smith Chart from $1/S_{11}^*$. Note the real part is interpreted as negative

$$
Z_{in} = 50(-0.4 - 0.4j)
$$

•• The $G_S = 5\,\mathrm{dB}$ gain circle is calculated as follows

$$
g_S = 3.15(1 - |S_{11}|^2)
$$

$$
R_S = \frac{\sqrt{1 - g_S}(1 - |S_{11}|^2)}{1 - |S_{11}|^2 (1 - g_S)} = 0.236
$$

$$
C_S = \frac{g_S S_{11}^*}{1 - |S_{11}|^2 (1 - g_S)} = -.3 + 0.35j
$$

 \bullet We can select any point on this circle and obtain a stable gain of 5 dB . In particular, we can pick ^a point near the origin (to maximize the BW) but with aslarge of ^a real impedance as possible:

$$
Z_S = 50(0.75 + 0.4j)
$$

Bilateral Amp Design

• \bullet In the bilateral case, we will work with the power gain $G_p.$ The transducer gain is not used since the source impedance is a function of the load impedaance. G_p , on the other hand, is only ^a function of the load.

$$
G_p = \frac{|S_{21}|^2 (1 - |\Gamma_L|^2)}{\left(1 - \left|\frac{S_{11} - \Delta\Gamma_L}{1 - S_{22}\Gamma_L}\right|^2\right) |1 - S_{22}\Gamma_L|^2} = |S_{21}|^2 g_p
$$

•It can be shown that g_p is a circle on the Γ_L plane. The radius and center are given by

$$
R_L = \frac{\sqrt{1 - 2k|S_{12}S_{21}|g_p - |S_{12}S_{21}|^2 g_p^2}}{\left|-1 - |S_{22}|^2 g_p + |\Delta|^2 g_p\right|^2}
$$

$$
C_L = \frac{g_p(S_{22}^* - \Delta^* S_{11})}{1 + g_p(|S_{22}|^2 - |\Delta|^2)}
$$

Bilateral Amp (cont)

• We can also use this formula to find the maximum gain. We know that this occurswhen $R_L = 0$, or

$$
1 - 2k|S_{12}S_{21}|g_{p,max} + |S_{12}S_{21}|^2 g_{p,max}^2 = 0
$$

$$
g_{p,max} = \frac{1}{|S_{12}S_{21}|} \left(K - \sqrt{K^2 - 1} \right)
$$

$$
G_{p,max} = \left| \frac{S_{21}}{S_{12}} \right| \left(K - \sqrt{K^2 - 1} \right)
$$

- • The design procedure is as follows
	- 1. Specify g_{p}
	- 2. Draw operation gain circle.
	- 3. Draw load stability circle. Select Γ_L that is in the stable region and not too close to the stability circle.
	- 4. Draw source stability circle.
	- 5. To maximize gain, calculate Γ_{in} and check to see if $\Gamma_S = \Gamma_{in}^*$ is in the stable region. If not, iterate on Γ_L or compromise.