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Stability of a Two-Port

• A two-port is unstable if the admittance of either port has a negative conductance
for a passive termination on the second port. Under such a condtion, the two-port
can oscillate.

• Consider the input admittance

Yin = Gin + jBin = Y11 −
Y12Y21

Y22 + YL

• Using the following definitions

Y11 = g11 + jb11

Y22 = g22 + jb22

Y12Y21 = P + jQ = L∠φ

YL = GL + jBL

• Now substitute real/imag parts of the above quantities into Yin

Yin = g11 + jb11 −
P + jQ

g22 + jb22 + GL + jBL

= g11 + jb11 −
(P + jQ)(g22 + GL − j(b22 + BL))

(g22 + GL)2 + (b22 + BL)2
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Input Conductance

• Taking the real part, we have the input conductance

<(Yin) = Gin = g11 −
P (g22 + GL) + Q(b22 + BL)

(g22 + GL)2 + (b22 + BL)2

=
(g22 + GL)2 + (b22 + BL)2 − P

g11

(g22 + GL) − Q
g11

(b22 + BL)

D

• Since D > 0 if g11 > 0, we can focus on the numerator. Note that g11 > 0 is a
requirement since otherwise oscillations would occur for a short circuit at port 2.

• The numerator can be factored into several positive terms

N = (g22 + GL)2 + (b22 + BL)2 −
P

g11

(g22 + GL) −
Q

g11

(b22 + BL)

=

�
GL +

�
g22 −

P

2g11

��2

+

�
BL +

�

b22 −
Q

2g11

��2

−
P 2 + Q2

4g2
11
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Input Conductance (cont)

• Now note that the numerator can go negative only if the first two terms are smaller
than the last term. To minimize the first two terms, choose GL = 0 and

BL = −

�

b22 − Q
2g11

�

(reactive load)

Nmin =

�

g22 +
P

2g11

�2

−
P 2 + Q2

4g2
11

• And thus the above must remain positive, Nmin > 0, so�
g22 +

P

2g11
�2

−
P 2 + Q2

4g2
11

> 0

g11g22 >
P + L

2
=

L

2
(1 + cos φ)
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Linvill/Llewellyn Stability Factors
• Using the above equation, we define the Linvill stability factor

L < 2g11g22 − P

C =
L

2g11g22 − P
< 1

• The two-port is stable if 0 < C < 1.

• It’s more common to use the inverse of C as the stability measure

2g11g22 − P

L
> 1

• The above definition of stability is perhaps the most common

K =
2<(Y11)<(Y22) −<(Y12Y21)

|Y12Y21|
> 1

• The above expression is identical if we interchnage ports 1/2. Thus it’s the general
condition for stability.

• Note that K > 1 is the same condition for the maximum stable gain derived last
lecture. The connection is now more obvious. If K < 1, then the maximum gain is
infinity!
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Stability From Another Perspective

• We can also derive stability in terms of the input reflection coefficient. For a
general two-port with load ΓL we have

v−
2

= Γ−1

L
v+

2
= S21v+

1
+ S22v+

2

v+

2
=

S21

Γ−1

L
− S22

v−
1

v−
1

=

�
S11 +

S12S21ΓL

1 − ΓLS22

�
v+

1

Γ = S11 +
S12S21ΓL

1 − ΓLS22

• If |Γ| < 1 for all ΓL, then the two-port is stable

Γ =
S11(1 − S22ΓL) + S12S21ΓL

1 − S22ΓL

=
S11 + ΓL(S21S12 − S11S22)

1 − S22ΓL

=
S11 − ∆ΓL

1 − S22ΓL
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Stability Circle

• To find the boundary between stability/instability, let’s set |Γ| = 1����S11 − ∆ΓL

1 − S22ΓL

���� = 1

|S11 − ∆ΓL| = |1 − S22ΓL|

• After some algebraic manipulations, we arrive at the following equation����Γ −
S∗

22
− ∆∗S11

|S22|2 − |∆|2
���� = |S12S21|

|S22|2 − |∆|2

• This is of course an equation of a circle, |Γ − C| = R, in the complex plane with
center at C and radius R

• Thus a circle on the Smith Chart divides the region of instability from stability.

University of California, Berkeley EECS 217 Lecture 17 – p. 7/21



Example: Stability Circle

CS

RS

|S11| < 1

sta
ble

 re
gi

o
n

unstable

 re
g
io

n

• In this example, the origin
of the circle lies outside
the stability circle but a
portion of the circle falls
inside the unit circle. Is
the region of stability
inside the circle or
outside?

• This is easily determined
if we note that if ΓL = 0,
then Γ = S11. So if S11 <

1, the origin should be in
the stable region. Other-
wise, if S11 > 1, the origin
should be in the unstable
region.
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Stability: Unilateral Case

• Consider the stability circle for a unilateral two-port

CS =
S∗

11
− (S∗

11
S∗

22
)S22

|S11|2 − |S11S22|2
=

S∗

11

|S11|2

RS = 0

|CS | =
1

|S11|

• The cetner of the circle lies outside of the unit circle if |S11| < 1. The same is true
of the load stability circle. Since the radius is zero, stability is only determined by
the location of the center.

• If S12 = 0, then the two-port is unconditionally stable if S11 < 1 and S22 < 1.

• This result is trivial since
ΓS

��
S12=0 = S11

• The stability of the source depends only on the device and not on the load.
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Mu Stability Test

• If we want to determine if a two-port is unconditionally stable, then we should use
the µ test

µ =
1 − |S11|2

|S22 − ∆S∗

11
| + |S12S21|

> 1

• The µ test not only is a test for unconditional stability, but the magnitude of µ is a
measure of the stability. In other words, if one two port has a larger µ, it is more
stable.

• The advantage of the µ test is that only a single parameter needs to be evaluated.
There are no auxiliary conditions like the K test derivation earlier.

• The derivaiton of the µ test can proceed as follows. First let ΓS = |ρs|ejφ and
evaluate Γout

Γout =
S22 − ∆|ρs|ejφ

1 − S11|ρs|ejφ

• Next we can manipulate this equation into the following eq. for a circle
|Γout − C| = R ����Γout +

|ρs|S∗

11
∆ − S22

1 − |ρs||S11|2

���� =

p

|ρs||S12S21|

(1 − |ρs||S11|2)
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Mu Test (cont)

• For a two-port to be unconditionally stable, we’d like Γout to fall within the unit
circle

||C| + R| < 1

||ρs|S
∗

11∆ − S22| +

p

|ρs||S21S12| < 1 − |ρs||S11|
2

||ρs|S
∗

11∆ − S22| +

p
|ρs||S21S12| + |ρs||S11|

2 < 1

• The worse case stability occurs when |ρs| = 1 since it maximizes the left-hand
side of the equation. Therefore we have

µ =
1 − |S11|2

|S∗

11
∆ − S22| + |S12S21|

> 1
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K-∆ Test

• The K stability test has already been derived using Y parameters. We can also do
a derivation based on S parameters. This form of the equation has been attributed
to Rollett and Kurokawa.

• The idea is very simple and similar to the µ test. We simply require that all points
in the instability region fall outside of the unit circle.

• The stability circle will intersect with the unit circle if

|CL| − RL > 1

or
|S∗

22
− ∆∗S11| − |S12S21|

|S22|2 − |∆|2
> 1

• This can be recast into the following form (assuming |∆| < 1)

K =
1 − |S11|2 − |S22|2 + |∆|2

2|S12||S21|
> 1
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N -Port Passivity

• We would like to find if an N -port is active or passive. By definition, an N -port is
passive if it can only absorb net power. The total net complex power flowing into or
out of a N port is given by

P = (V ∗

1 I1 + V ∗

2 I2 + · · · ) = (I∗1V1 + I∗2 V2 + · · · )

• If we sum the above two terms we have

P =
1

2
(v∗)T i +

1

2
(i∗)T v

• For vectors of current and voltage i and v. Using the admittanc ematrix i = Y v,
this can be recast as

P =
1

2
(v∗)T Y v +

1

2
(Y ∗v∗)T v =

1

2
(v∗)T Y v +

1

2
(v∗)T (Y ∗)T v

P = (v∗)T 1

2
(Y + (Y ∗)T )v = (v∗)T YHv

• Thus for a network to be passive, the Hermitian part of the matrix YH should be
positive semi-definite.
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Two-Port Passivity

• For a two-port, the condition for passivity can be simplified as follows. Let the
general hybrid admittance matrix for the two-port be given by

H(s) =

 

k11 k12

k21 k22

!

=

 

m11 m12

m21 m22

!
+ j

 
n11 n12

n21 n22

!

HH(s) =
1

2
(H(s) + H∗(s))

=

 

m11
1

2
((m12 + m21) + j(n12 − n21))

((m12 + m21) + j(n21 − n12)) m22

!

• This matrix is positive semi-definite if

m11 > 0 m22 > 0 detHn(s) ≥ 0 or

4m11m22 − |k12|
2 − |k21|

2 − 2<(k12k21) ≥ 0

4m11m22 ≥ |k12 + k∗

21|
2
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Hybrid-Pi Example

roCπ

Cµ

gmvin

+

vin

−
Rπ Co

• The hybrid-pi model for a transistor is shown above. Under what conditions is this
two-port active? The hybrid matrix is given by

H(s) =
1

Gπ + s(Cπ + Cµ)

 
1 sCµ

gm − sCµ q(s)

!

q(s) = (Gπ + sCπ)(G0 + sCµ) + sCµ(Gπ + gm)

• Applying the condition for passivity we arrive at

4GπG0 ≥ g2
m

• The above equation is either satisfied for the two-port or not, regardless of
frequency. Thus our analysis shows that the hybrid-pi model is not physical. We
know from experience that real two-ports are active up to some frequency fmax.
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