EECS 217

Lecture 17: Stability and Passivity of Two-Ports

Prof. Niknejad

University of California, Berkeley

Stability of ^a Two-Port

- \bullet ^A two-port is unstable if the admittance of either port has ^a negative conductance for ^a passive termination on the second port. Under such ^a condtion, the two-port can oscillate.
- \bullet Consider the input admittance

$$
Y_{in} = G_{in} + jB_{in} = Y_{11} - \frac{Y_{12}Y_{21}}{Y_{22} + Y_L}
$$

•Using the following definitions

$$
Y_{11} = g_{11} + jb_{11}
$$

\n
$$
Y_{12}Y_{21} = P + jQ = L\angle\phi
$$

\n
$$
Y_{12}Y_{21} = P + jQ = L\angle\phi
$$

\n
$$
Y_L = G_L + jB_L
$$

• \bullet Now substitute real/imag parts of the above quantities into Y_{in}

$$
Y_{in} = g_{11} + jb_{11} - \frac{P + jQ}{g_{22} + jb_{22} + G_L + jB_L}
$$

$$
= g_{11} + jb_{11} - \frac{(P + jQ)(g_{22} + G_L - j(b_{22} + B_L))}{(g_{22} + G_L)^2 + (b_{22} + B_L)^2}
$$

University of California, Berkeley

Input Conductance

•Taking the real part, we have the input conductance

$$
\Re(Y_{in}) = G_{in} = g_{11} - \frac{P(g_{22} + G_L) + Q(b_{22} + B_L)}{(g_{22} + G_L)^2 + (b_{22} + B_L)^2}
$$

$$
= \frac{(g_{22} + G_L)^2 + (b_{22} + B_L)^2 - \frac{P}{g_{11}}(g_{22} + G_L) - \frac{Q}{g_{11}}(b_{22} + B_L)}{D}
$$

- •Since $D > 0$ if $g_{11} > 0$, we can focus on the numerator. Note that $g_{11} > 0$ is a
requirement since otherwise socillations would securifor a short singuit at part of requirement since otherwise oscillations would occur for ^a short circuit at port 2.
- •The numerator can be factored into several positive terms

$$
N = (g_{22} + G_L)^2 + (b_{22} + B_L)^2 - \frac{P}{g_{11}}(g_{22} + G_L) - \frac{Q}{g_{11}}(b_{22} + B_L)
$$

= $\left(G_L + \left(g_{22} - \frac{P}{2g_{11}}\right)\right)^2 + \left(B_L + \left(b_{22} - \frac{Q}{2g_{11}}\right)\right)^2 - \frac{P^2 + Q^2}{4g_{11}^2}$

Input Conductance (cont)

 \bullet Now note that the numerator can go negative only if the first two terms are smaller than the last term. To minimize the first two terms, choose $G_L = 0$ and $B_L= \left(b_{22}-\frac{Q}{2g_1}\right)$ $\left(\frac{Q}{2g_{11}}\right)$ (reactive load)

$$
N_{min} = \left(g_{22} + \frac{P}{2g_{11}}\right)^2 - \frac{P^2 + Q^2}{4g_{11}^2}
$$

 \bullet **•** And thus the above must remain positive, $N_{min}>0$, so

$$
\left(g_{22} + \frac{P}{2g_{11}}\right)^2 - \frac{P^2 + Q^2}{4g_{11}^2} > 0
$$

$$
g_{11}g_{22} > \frac{P+L}{2} = \frac{L}{2}(1 + \cos \phi)
$$

Linvill/Llewellyn Stability Factors

•Using the above equation, we define the Linvill stability factor

$$
L<2g_{11}g_{22}-P
$$

$$
C = \frac{L}{2g_{11}g_{22} - P} < 1
$$

- • \bullet The two-port is stable if $0 < C < 1$.
- •It's more common to use the inverse of C as the stability measure

$$
\frac{2g_{11}g_{22} - P}{L} > 1
$$

•The above definition of stability is perhaps the most common

$$
K = \frac{2\Re(Y_{11})\Re(Y_{22}) - \Re(Y_{12}Y_{21})}{|Y_{12}Y_{21}|} > 1
$$

- • The above expression is identical if we interchnage ports 1/2. Thus it's the general condition for stability.
- \bullet \bullet Note that $K > 1$ is the same condition for the maximum stable gain derived last lecture. The connection is now more obvious. If $K < 1,$ then the maximum gain is infinity!

Stability From Another Perspective

 \bullet We can also derive stability in terms of the input reflection coefficient. For ^ageneral two-port with load Γ_L we have

$$
v_2^- = \Gamma_L^{-1} v_2^+ = S_{21} v_1^+ + S_{22} v_2^+
$$

$$
v_2^+ = \frac{S_{21}}{\Gamma_L^{-1} - S_{22}} v_1^-
$$

$$
v_1^- = \left(S_{11} + \frac{S_{12} S_{21} \Gamma_L}{1 - \Gamma_L S_{22}} \right) v_1^+
$$

$$
\Gamma = S_{11} + \frac{S_{12} S_{21} \Gamma_L}{1 - \Gamma_L S_{22}}
$$

• If $|\Gamma|$ $<$ 1 for all Γ_L , then the two-port is stable

$$
\Gamma = \frac{S_{11}(1 - S_{22}\Gamma_L) + S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L} = \frac{S_{11} + \Gamma_L(S_{21}S_{12} - S_{11}S_{22})}{1 - S_{22}\Gamma_L}
$$

$$
=\frac{S_{11}-\Delta\Gamma_L}{1-S_{22}\Gamma_L}
$$

Stability Circle

 \bullet To find the boundary between stability/instability, let's set $|\Gamma|=1$

$$
\left|\frac{S_{11} - \Delta\Gamma_L}{1 - S_{22}\Gamma_L}\right| = 1
$$

$$
|S_{11} - \Delta \Gamma_L| = |1 - S_{22} \Gamma_L|
$$

•After some algebraic manipulations, we arrive at the following equation

$$
\left|\Gamma - \frac{S_{22}^* - \Delta^* S_{11}}{|S_{22}|^2 - |\Delta|^2}\right| = \frac{|S_{12}S_{21}|}{|S_{22}|^2 - |\Delta|^2}
$$

- •**This is of course an equation of a circle,** $|\Gamma - C| = R$ **, in the complex plane with**
 Contains C and radius R center at C and radius R
- **•** Thus a circle on the Smith Chart divides the region of instability from stability. \bullet

Example: Stability Circle

- • In this example, the originof the circle lies outside the stability circle but ^a portion of the circle falls inside the unit circle. Isthe region of stabilityinside the circle oroutside?
- \bullet This is easily determinedif we note that if $\Gamma_L=0,$ then $\Gamma=S_{11}.$ So if $S_{11}<$ ¹, the origin should be in the stable region. Otherwise, if $S_{11}>1,$ the origin should be in the unstableregion.

Stability: Unilateral Case

•Consider the stability circle for ^a unilateral two-port

$$
C_S = \frac{S_{11}^* - (S_{11}^* S_{22}^*) S_{22}}{|S_{11}|^2 - |S_{11} S_{22}|^2} = \frac{S_{11}^*}{|S_{11}|^2}
$$

$$
R_S = 0
$$

$$
|C_S| = \frac{1}{|S_{11}|}
$$

- •The cetner of the circle lies outside of the unit circle if $|S_{11}| < 1$. The same is true of the load stability circle. Since the radius is zero, stability is only determined bythe location of the center.
- •If $S_{12} = 0$, then the two-port is unconditionally stable if $S_{11} < 1$ and $S_{22} < 1$.
- •This result is trivial since

$$
\Gamma_S |_{S_{12}=0} = S_{11}
$$

•The stability of the source depends only on the device and not on the load.

Mu Stability Test

• If we want to determine if ^a two-port is unconditionally stable, then we should usethe μ test

$$
\mu = \frac{1 - |S_{11}|^2}{|S_{22} - \Delta S_{11}^*| + |S_{12}S_{21}|} > 1
$$

- •The μ test not only is a test for unconditional stability, but the magnitude of μ is a measure of the stability. In other words, if one two port has a larger μ , it is more stable.
- \bullet The advantage of the μ test is that only a single parameter needs to be evaluated. There are no auxiliary conditions like the K test derivation earlier.
- •• The derivaiton of the μ test can proceed as follows. First let $\Gamma_S = |\rho_s|e^{j\phi}$ and evaluate Γ_{out}

$$
\Gamma_{out} = \frac{S_{22} - \Delta|\rho_s|e^{j\phi}}{1 - S_{11}|\rho_s|e^{j\phi}}
$$

• Next we can manipulate this equation into the following eq. for ^a circle $|\Gamma_{out} - C| = R$

$$
\left|\Gamma_{out} + \frac{|\rho_s|S_{11}^* \Delta - S_{22}}{1 - |\rho_s| |S_{11}|^2}\right| = \frac{\sqrt{|\rho_s|} |S_{12} S_{21}|}{(1 - |\rho_s| |S_{11}|^2)}
$$

University of California, Berkeley

Mu Test (cont)

 \bullet For a two-port to be unconditionally stable, we'd like Γ_{out} to fall within the unit circle

$$
||C| + R| < 1
$$
\n
$$
||\rho_s| S_{11}^* \Delta - S_{22} + \sqrt{|\rho_s|} |S_{21} S_{12}| < 1 - |\rho_s| |S_{11}|^2
$$
\n
$$
||\rho_s| S_{11}^* \Delta - S_{22}| + \sqrt{|\rho_s|} |S_{21} S_{12}| + |\rho_s| |S_{11}|^2 < 1
$$

 \bullet The worse case stability occurs when $|\rho_s|=1$ since it maximizes the left-hand side of the equation. Therefore we have

$$
\mu = \frac{1 - |S_{11}|^2}{|S_{11}^* \Delta - S_{22}| + |S_{12}S_{21}|} > 1
$$

$K-\Delta$ Test

- \bullet The K stability test has already been derived using Y parameters. We can also do
a derivation based an S parameters. This form of the equation bas been attributed a derivation based on S parameters. This form of the equation has been attributed to Rollett and Kurokawa.
- \bullet The idea is very simple and similar to the μ test. We simply require that all points in the instability region fall outside of the unit circle.
- •The stability circle will intersect with the unit circle if

$$
|C_L| - R_L > 1
$$

or

$$
\frac{|S_{22}^* - \Delta^* S_{11}| - |S_{12}S_{21}|}{|S_{22}|^2 - |\Delta|^2} > 1
$$

•● This can be recast into the following form (assuming $|\Delta| < 1$)

$$
K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2|S_{12}||S_{21}|} > 1
$$

N-Port Passivity

 \bullet We would like to find if an N-port is active or passive. By definition, an N-port is passive if it can only absorb net power. The total net complex power flowing into or out of a N port is given by

$$
P = (V_1^* I_1 + V_2^* I_2 + \cdots) = (I_1^* V_1 + I_2^* V_2 + \cdots)
$$

•If we sum the above two terms we have

$$
P = \frac{1}{2} (v^*)^T i + \frac{1}{2} (i^*)^T v
$$

 \bullet For vectors of current and voltage i and v. Using the admittanc ematrix $i = Yv$,
this can be recoet as this can be recast as

$$
P = \frac{1}{2} (v^*)^T Y v + \frac{1}{2} (Y^* v^*)^T v = \frac{1}{2} (v^*)^T Y v + \frac{1}{2} (v^*)^T (Y^*)^T v
$$

$$
P = (v^*)^T \frac{1}{2} (Y + (Y^*)^T) v = (v^*)^T Y_H v
$$

 \bullet • Thus for a network to be passive, the Hermitian part of the matrix Y_H should be nositive semi-definite positive semi-definite.

Two-Port Passivity

 \bullet **•** For a two-port, the condition for passivity can be simplified as follows. Let the general hybrid admittance matrix for the two-port be given by

$$
H(s) = \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} + j \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix}
$$

$$
H_H(s) = \frac{1}{2} (H(s) + H^*(s))
$$

$$
= \left(\begin{array}{c}m_{11} \qquad \qquad \frac{1}{2}((m_{12}+m_{21})+j(n_{12}-n_{21})) \\ ((m_{12}+m_{21})+j(n_{21}-n_{12})) \qquad \qquad m_{22}\end{array}\right)
$$

 \bullet This matrix is positive semi-definite if

> m_{11} $>$ $m_{22} > 0$ $det H_n(s) \geq 0$ or

$$
4m_{11}m_{22} - |k_{12}|^2 - |k_{21}|^2 - 2\Re(k_{12}k_{21}) \ge 0
$$

 $4m_{11}m_{22} \geq |k_{12}+k_{21}^{*}|^2$

Hybrid-Pi Example

• The hybrid-pi model for ^a transistor is shown above. Under what conditions is thistwo-port active? The hybrid matrix is given by

$$
H(s) = \frac{1}{G_{\pi} + s(C_{\pi} + C_{\mu})} \left(\begin{array}{cc} 1 & sC_{\mu} \\ g_m - sC_{\mu} & q(s) \end{array} \right)
$$

$$
q(s) = (G_{\pi} + sC_{\pi})(G_0 + sC_{\mu}) + sC_{\mu}(G_{\pi} + g_m)
$$

•Applying the condition for passivity we arrive at

$$
4G_{\pi}G_0 \ge g_m^2
$$

• The above equation is either satisfied for the two-port or not, regardless of frequency. Thus our analysis shows that the hybrid-pi model is not physical. Weknow from experience that real two-ports are active up to some frequency $f_{max}.$