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Why Two-Ports?
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• A large array of important devices are two-ports. Examples include amplifiers,
filters, and matching networks.

• A general two-port is shown above and represented by the 8 real numbers of the
two-port matrix. A unilateral two-port is shown with as a triangle to emphasize the
fact that only signals from the input appear at the output. In terms of the two-port
matrix, the complex coefficient m12 = 0 (e.g. y12 = 0, z12 = 0, etc).
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Input/Output Admittance

• The input and output impedance of a two-port will play an important role in our
discussions. The stability and power gain of the two-port is determined by these
quantities.

• In terms of y-parameters

Yin =
I1

V1
=

Y11V1 + Y12V2

V1
= Y11 + Y12

V2

V1

• The voltage gain of the two-port is given by solving the following equations

−I2 = V2YL = −(Y21V1 + V2Y22)

V2

V1
=

−Y21

YL + Y22

• Note that for a simple transistor Y21 = gm and so the above reduces to the familiar
gmRo||RL.
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Input/Output Admittance (cont)
• We can now solve for the input and output admittance

Yin = Y11 − Y12Y21

YL + Y22

Yout = Y22 − Y12Y21

YS + Y11

• Note that if Y12 = 0, then the input and output impedance are de-coupled

Yin = Y11

Yout = Y22

• But in general they are coupled and changing the load will change the input
admittance.

• It’s interesting to note the same formula derived above also works for the
input/output impedance

Zin = Z11 − Z12Z21

ZL + Z22

• The same is true for the hybrid and inverse hybrid matrices.
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Power Gain
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• We can define power gain in many different ways. The power gain Gp is defined
as follows

Gp =
PL

Pin

= f(YL, Yij) 6= f(YS)

• We note that this power gain is a function of the load admittance YL and the
two-port parameters Yij .

• The available power gain is defined as follows

Ga =
Pav,L

Pav,S

= f(YS , Yij) 6= f(YL)

• The available power from the two-port is denoted Pav,L whereas the power
available from the source is Pav,S .
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Power Gain (cont)
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• Finally, the transducer gain is defined by

GT =
PL

Pav,S

= f(YL, YS , Yij)

• This is a measure of the efficacy of the two-port as it compares the power at the
load to a simple conjugate match.
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Derivation of Power Gain

• The power gain is readily calculated from the input admittance and voltage gain

Pin =
|V1|2

2
<(Yin)

PL =
|V2|2

2
<(YL)

Gp =

∣

∣

∣

∣

V2

V1

∣

∣

∣

∣

2 <(YL)

<(Yin)

Gp =
|Y21|2

|YL + Y22|2
<(YL)

<(Yin)
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Derivation of Available Gain

YSIS

[

Y11 Y12

Y21 Y22

]

YeqIeq

• To derive the available power gain, consider a Norton equivalent for the two-port
where

Ieq = I2 = Y21V1 =
Y21

Y11 + YS

IS

• The Norton equivalent admittance is simply the output admittance of the two-port

Yeq = Y22 − Y21Y12

Y11 + YS

• The available power at the source and load are given by

Pav,S =
|IS |2

8<(YS)
Pav,L =

|Ieq|2
8<(Yeq)

Ga =
|Y21|2

|Y11 + YS |2
<(YS)

<(Yeq)
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Transducer Gain Derivation

• The transducer gain is given by

GT =
PL

Pav,S

=
1
2
<(YL)|V2|2

|IS |2

8<(YS)

= 4<(YL)<(YS)
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∣
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∣

∣

∣

∣

2

• We need to find the output voltage in terms of the source current. Using the
voltage gain we have and input admittance we have
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∣
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∣
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Transducer Gain (cont)

• We can now express the output voltage as a function of source current as

∣

∣

∣

∣

V2

IS

∣

∣

∣

∣

2

=
|Y21|2

|(YS + Y11)(YL + Y22) − Y12Y21|2

• And thus the transducer gain

GT =
4<(YL)<(YS)|Y21|2

|(YS + Y11)(YL + Y22) − Y12Y21|2

• It’s interesting to note that all of the gain expression we have derived are in the
exact same form for the impedance, hybrid, and inverse hybrid matrices.
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Comparison of Power Gains

• In general, PL ≤ Pav,L, with equality for a matched load. Thus we can say that

GT ≤ Ga

• The maximum transducer gain as a function of the load impedance thus occurs
when the load is conjugately matched to the two-port output impedance

GT,max,L =
PL(YL = Y ∗

out)

Pav,S

= Ga

• Likewise, since Pin ≤ Pav,S , again with equality when the the two-port is
conjugately matched to the source, we have

GT ≤ Gp

• The transducer gain is maximized with respect to the source when

GT,max,S = GT (Yin = Y ∗
S ) = Gp
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Bi-Conjugate Match

• When the input and output are simultaneously conjugately matched, or a
bi-conjugate match has been established, we find that the transducer gain is
maximized with respect to the source and load impedance

GT,max = Gp,max = Ga,max

• This is thus the recipe for calculating the optimal source and load impedance in to
maximize gain

Yin = Y11 − Y12Y21

YL + Y22
= Y ∗

S

Yout = Y22 − Y12Y21

YS + Y11
= Y ∗

L

• Solution of the above four equations (real/imag) results in the optimal YS,opt and
YL,opt.
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Calculation of Optimal Source/Load

• Another approach is to simply equate the partial derivatives of GT with respect to
the source/load admittance to find the maximum point

∂GT

∂GS

= 0

∂GT

∂BS

= 0

∂GT

∂GL

= 0

∂GT

∂BL

= 0

• Again we have four equations. But we should be smarter about this and recall that
the maximum gains are all equal. Since Ga and Gp are only a function of the
source or load, we can get away with only solving two equations. For instance

∂Ga

∂GS

= 0
∂Ga

∂BS

= 0

• This yields YS,opt and by setting YL = Y ∗
out we can find the YL,opt.

• Likewise we can also solve
∂Gp

∂GL

= 0
∂Gp

∂BL

= 0

• And now use YS,opt = Y ∗
in.
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Optimal Power Gain Derivation

• Let’s outline the procedure for the optimal power gain. We’ll use the power gain Gp

and take partials with respect to the load. Let

Yjk = mjk + jnjk

YL = GL + jXL

Y12Y21 = P + jQ = Lejφ

Gp =
|Y21|2

D
GL

<
(

Y11 − Y12Y21

YL + Y22

)

= m11 − <(Y12Y21(YL + Y22)∗)

|YL + Y22|2

D = m11|YL + Y22|2 − P (GL + m22) − Q(BL + n22)

∂Gp

∂BL

= 0 = −|Y21|2GL

D2

∂D

∂BL
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Optimal Load (cont)

• Solving the above equation we arrive at the following solution

BL,opt =
Q

2m11
− n22

• In a similar fashion, solving for the optimal load conductance

GL,opt =
1

2m11

√

(2m11m22 − P )2 − L2

• If we substitute these values into the equation for Gp (lot’s of algebra ...), we arrive
at

Gp,max =
|Y21|2

2m11m22 − P +
√

(2m11m22 − P )2 − L2
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Final Solution

• Notice that for the solution to exists, GL must be a real number. In other words

(2m11m22 − P )2 > L2

(2m11m22 − P ) > L

K =
2m11m22 − P

L
> 1

• This factor K plays an important role as we shall show that it also corresponds to
an unconditionally stable two-port. We can recast all of the work up to here in
terms of K

YS,opt =
Y12Y21 + |Y12Y21|(K +

√
K2 − 1)

2<(Y22)

YL,opt =
Y12Y21 + |Y12Y21|(K +

√
K2 − 1)

2<(Y11)

Gp,max = GT,max = Ga,max =
Y21

Y12

1

K +
√

K2 − 1
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Maximum Gain

• The maximum gain is usually written in the following insightful form

Gmax =
Y21

Y12
(K −

√

K2 − 1)

• For a reciprocal network, such as a passive element, Y12 = Y21 and thus the
maximum gain is given by the second factor

Gr,max = K −
√

K2 − 1

• Since K > 1, |Gr,max| < 1. The reciprocal gain factor is known as the efficiency
of the reciprocal network.

• The first factor, on the other hand, is a measure of the non-reciprocity.
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Unilateral Maximum Gain

• For a unilateral network, the design for maximum gain is trivial. For a bi-conjugate
match

YS = Y ∗
11

YL = Y ∗
22

GT,max =
|Y21|2

4m11m22
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