EECS 217

Lecture 16: Properties of Two-Ports

Prof. Niknejad

University of California, Berkeley

Why Two-Ports?

+ + · ^Y¹¹ ^Y1² ^Y2¹ ^Y²² ¸ ^Y¹² ⁼ ⁰ ISV1V2 Y^S Y^L

- • A large array of important devices are two-ports. Examples include amplifiers, filters, and matching networks.
- \bullet A general two-port is shown above and represented by the 8 real numbers of the two-port matrix. A *unilateral* two-port is shown with as a triangle to emphasize the fact that only signals from the input appear at the output. In terms of the two-port matrix, the complex coefficient $m_{12} = 0$ (e.g. $y_{12} = 0$, $z_{12} = 0$, etc).

Input/Output Admittance

- •• The input and output impedance of a two-port will play an important role in our discussions. The stability and power gain of the two-port is determined by these quantities.
- \bullet **In terms of y-parameters**

$$
Y_{in} = \frac{I_1}{V_1} = \frac{Y_{11}V_1 + Y_{12}V_2}{V_1} = Y_{11} + Y_{12}\frac{V_2}{V_1}
$$

•• The voltage gain of the two-port is given by solving the following equations

$$
-I_2 = V_2 Y_L = -(Y_{21}V_1 + V_2 Y_{22})
$$

$$
\frac{V_2}{V_1} = \frac{-Y_{21}}{Y_L + Y_{22}}
$$

 \bullet \bullet Note that for a simple transistor $Y_{21}=g_m$ and so the above reduces to the familiar $g_m R_o || R_L$.

Input/Output Admittance (cont)

 \bullet • We can now solve for the input and output admittance

$$
Y_{in} = Y_{11} - \frac{Y_{12}Y_{21}}{Y_L + Y_{22}}
$$

$$
Y_{out} = Y_{22} - \frac{Y_{12}Y_{21}}{Y_S + Y_{11}}
$$

 \bullet \bullet Note that if $Y_{12}=0$, then the input and output impedance are de-coupled

$$
Y_{in}=Y_{11}
$$

$$
Y_{out} = Y_{22}
$$

- \bullet But in general they are coupled and changing the load will change the input admittance.
- \bullet • It's interesting to note the same formula derived above also works for the input/output impedance

$$
Z_{in} = Z_{11} - \frac{Z_{12}Z_{21}}{Z_L + Z_{22}}
$$

•• The same is true for the hybrid and inverse hybrid matrices.

Power Gain

• \bullet We can define power gain in many different ways. The *power gain* G_p is defined as follows

$$
G_p = \frac{P_L}{P_{in}} = f(Y_L, Y_{ij}) \neq f(Y_S)
$$

- • \bullet We note that this power gain is a function of the load admittance Y_L and the two-port parameters Y_{ij} .
- •• The *available power gain* is defined as follows

$$
G_a = \frac{P_{av,L}}{P_{av,S}} = f(Y_S, Y_{ij}) \neq f(Y_L)
$$

• \bullet The available power from the two-port is denoted $P_{av,L}$ whereas the power available from the source is $P_{av,S}.$

Power Gain (cont)

•Finally, the transducer gain is defined by

$$
G_T = \frac{P_L}{P_{av,S}} = f(Y_L, Y_S, Y_{ij})
$$

 \bullet **•** This is a measure of the efficacy of the two-port as it compares the power at the load to ^a simple conjugate match.

Derivation of Power Gain

 \bullet **•** The power gain is readily calculated from the input admittance and voltage gain

$$
P_{in} = \frac{|V_1|^2}{2} \Re(Y_{in})
$$

$$
P_L = \frac{|V_2|^2}{2} \Re(Y_L)
$$

$$
G_p = \left|\frac{V_2}{V_1}\right|^2 \frac{\Re(Y_L)}{\Re(Y_{in})}
$$

$$
G_p = \frac{|Y_{21}|^2}{|Y_L + Y_{22}|^2} \frac{\Re(Y_L)}{\Re(Y_{in})}
$$

Derivation of Available Gain

$$
I_S \n\begin{array}{c}\n\begin{array}{c}\n\bullet \\
\bullet \\
\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\begin{array}{c}\nY_{11} & Y_{12} \\
Y_{21} & Y_{22}\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\begin{array}{c}\n\bullet \\
\bullet \\
\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\nI_{eq} \n\begin{array}{c}\n\bullet \\
\bullet \\
\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\bullet \\
\bullet \\
\end{array}\n\end{array}
$$

• To derive the available power gain, consider ^a Norton equivalent for the two-port where

$$
I_{eq} = I_2 = Y_{21}V_1 = \frac{Y_{21}}{Y_{11} + Y_S}I_S
$$

•• The Norton equivalent admittance is simply the output admittance of the two-port

$$
Y_{eq} = Y_{22} - \frac{Y_{21}Y_{12}}{Y_{11} + Y_S}
$$

 \bigcirc • The available power at the source and load are given by

$$
P_{av,S} = \frac{|I_S|^2}{8\Re(Y_S)} \qquad P_{av,L} = \frac{|I_{eq}|^2}{8\Re(Y_{eq})}
$$

$$
G_a = \frac{|Y_{21}|^2}{|Y_{11} + Y_S|^2} \frac{\Re(Y_S)}{\Re(Y_{eq})}
$$

Transducer Gain Derivation

 \bullet • The transducer gain is given by

$$
G_T = \frac{P_L}{P_{av,S}} = \frac{\frac{1}{2} \Re(Y_L) |V_2|^2}{\frac{|I_S|^2}{8 \Re(Y_S)}} = 4 \Re(Y_L) \Re(Y_S) \left| \frac{V_2}{I_S} \right|^2
$$

 \bullet • We need to find the output voltage in terms of the source current. Using the voltage gain we have and input admittance we have

$$
\left| \frac{V_2}{V_1} \right| = \left| \frac{Y_{21}}{Y_L + Y_{22}} \right|
$$

$$
I_S = V(Y_S + Y_{in})
$$

$$
\left| \frac{V_2}{I_S} \right| = \left| \frac{Y_{21}}{Y_L + Y_{22}} \right| \frac{1}{|Y_S + Y_{in}|}
$$

$$
|Y_S + Y_{in}| = \left| Y_S + Y_{11} - \frac{Y_{12}Y_{21}}{Y_L + Y_{22}} \right|
$$

Transducer Gain (cont)

 \bullet We can now express the output voltage as ^a function of source current as

$$
\left|\frac{V_2}{I_S}\right|^2 = \frac{|Y_{21}|^2}{\left| (Y_S + Y_{11})(Y_L + Y_{22}) - Y_{12}Y_{21} \right|^2}
$$

 \bullet • And thus the transducer gain

$$
G_T = \frac{4\Re(Y_L)\Re(Y_S)|Y_{21}|^2}{\left| (Y_S + Y_{11})(Y_L + Y_{22}) - Y_{12}Y_{21} \right|^2}
$$

•It's interesting to note that all of the gain expression we have derived are in the exact same form for the impedance, hybrid, and inverse hybrid matrices.

Comparison of Power Gains

 \bullet \bullet In general, $P_L \leq P_{av,L}$, with equality for a matched load. Thus we can say that

 $G_T\leq G_a$

•• The maximum transducer gain as a function of the load impedance thus occurs when the load is conjugately matched to the two-port output impedance

$$
G_{T,max,L} = \frac{P_L(Y_L = Y_{out}^*)}{P_{av,S}} = G_a
$$

 \bullet \bullet Likewise, since $P_{in} \leq P_{av,S}$, again with equality when the the two-port is conjugately matched to the source, we have

$$
G_T \leq G_p
$$

•**•** The transducer gain is maximized with respect to the source when

$$
G_{T,max,S} = G_T(Y_{in} = Y_S^*) = G_p
$$

Bi-Conjugate Match

 \bullet When the input and output are simultaneously conjugately matched, or ^a bi-conjugate match has been established, we find that the transducer gain is maximized with respect to the source and load impedance

$$
G_{T,max} = G_{p,max} = G_{a,max}
$$

•**•** This is thus the recipe for calculating the optimal source and load impedance in to maximize gain

$$
Y_{in} = Y_{11} - \frac{Y_{12}Y_{21}}{Y_L + Y_{22}} = Y_S^*
$$

$$
Y_{out} = Y_{22} - \frac{Y_{12}Y_{21}}{Y_S + Y_{11}} = Y_L^*
$$

 \bullet \bullet Solution of the above four equations (real/imag) results in the optimal $Y_{S,opt}$ and $Y_{L,opt}.$

Calculation of Optimal Source/Load

•Another approach is to simply equate the partial derivatives of G_T with respect to the source/load admittance to find the maximum point

$$
\frac{\partial G_T}{\partial G_S} = 0 \qquad \qquad \frac{\partial G_T}{\partial G_L} = 0
$$

$$
\frac{\partial G_T}{\partial B_S} = 0 \qquad \qquad \frac{\partial G_T}{\partial B_L} = 0
$$

• Again we have four equations. But we should be smarter about this and recall that the maximum gains are all equal. Since G_a and G_p are only a function of the source or load, we can get away with only solving two equations. For instance

$$
\frac{\partial G_a}{\partial G_S} = 0 \qquad \qquad \frac{\partial G_a}{\partial B_S} = 0
$$

- • \bullet This yields $Y_{S,opt}$ and by setting $Y_L=Y^*_{out}$ we can find the $Y_{L,opt}.$
- •**C** Likewise we can also solve

$$
\frac{\partial G_p}{\partial G_L} = 0 \qquad \qquad \frac{\partial G_p}{\partial B_L} = 0
$$

• \bullet And now use $Y_{S,opt}=Y_{in}^*.$

Optimal Power Gain Derivation

 \bullet $\bullet~$ Let's outline the procedure for the optimal power gain. We'll use the power gain G_p and take partials with respect to the load. Let

$$
Y_{jk} = m_{jk} + jn_{jk}
$$

\n
$$
Y_L = G_L + jX_L
$$

\n
$$
Y_{12}Y_{21} = P + jQ = Le^{j\phi}
$$

\n
$$
G_p = \frac{|Y_{21}|^2}{D}G_L
$$

\n
$$
\Re\left(Y_{11} - \frac{Y_{12}Y_{21}}{Y_L + Y_{22}}\right) = m_{11} - \frac{\Re(Y_{12}Y_{21}(Y_L + Y_{22})^*)}{|Y_L + Y_{22}|^2}
$$

\n
$$
D = m_{11}|Y_L + Y_{22}|^2 - P(G_L + m_{22}) - Q(B_L + n_{22})
$$

\n
$$
\frac{\partial G_p}{\partial B_L} = 0 = -\frac{|Y_{21}|^2 G_L}{D^2} \frac{\partial D}{\partial B_L}
$$

Optimal Load (cont)

 \bullet Solving the above equation we arrive at the following solution

$$
B_{L,opt} = \frac{Q}{2m_{11}} - n_{22}
$$

 \bullet \bullet In a similar fashion, solving for the optimal load conductance

$$
G_{L,opt} = \frac{1}{2m_{11}}\sqrt{(2m_{11}m_{22} - P)^2 - L^2}
$$

 \bullet \bullet If we substitute these values into the equation for G_p (lot's of algebra ...), we arrive at

$$
G_{p,max} = \frac{|Y_{21}|^2}{2m_{11}m_{22} - P + \sqrt{(2m_{11}m_{22} - P)^2 - L^2}}
$$

Final Solution

 \bullet \bullet Notice that for the solution to exists, G_L must be a real number. In other words

$$
(2m_{11}m_{22} - P)^{2} > L^{2}
$$

$$
(2m_{11}m_{22} - P) > L
$$

$$
K = \frac{2m_{11}m_{22} - P}{L} > 1
$$

 \bullet \bullet This factor K plays an important role as we shall show that it also corresponds to an unconditionally stable two-port. We can recast all of the work up to here in terms of K

$$
Y_{S,opt} = \frac{Y_{12}Y_{21} + |Y_{12}Y_{21}|(K + \sqrt{K^2 - 1})}{2\Re(Y_{22})}
$$

$$
Y_{L,opt} = \frac{Y_{12}Y_{21} + |Y_{12}Y_{21}|(K + \sqrt{K^2 - 1})}{2\Re(Y_{11})}
$$

$$
G_{p,max} = G_{T,max} = G_{a,max} = \frac{Y_{21}}{Y_{12}} \frac{1}{K + \sqrt{K^2 - 1}}
$$

Maximum Gain

•• The maximum gain is usually written in the following insightful form

$$
G_{max} = \frac{Y_{21}}{Y_{12}}(K - \sqrt{K^2 - 1})
$$

 \bullet For a reciprocal network, such as a passive element, $Y_{12} = Y_{21}$ and thus the maximum gain is given by the second factor

$$
G_{r,max} = K - \sqrt{K^2 - 1}
$$

- • $\bullet~$ Since $K>1,$ $|G_{r,max}|< 1.$ The reciprocal gain factor is known as the efficiency of the reciprocal network.
- \bullet • The first factor, on the other hand, is a measure of the non-reciprocity.

Unilateral Maximum Gain

 \bullet For a unilateral network, the design for maximum gain is trivial. For ^a bi-conjugate match

$$
Y_S = Y_{11}^*
$$

$$
Y_L = Y_{22}^*
$$

$$
G_{T,max} = \frac{|Y_{21}|^2}{4m_{11}m_{22}}
$$