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Transformers at High Frequency
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• Transformers pose several problems at high frequencies. As we have seen, the
distributed winding capacitance limits the high frequency application. The windings
cannot be isolated too much due to the lack of a lossless magnetic core, and
overall a coupling factor k ∼ 0.8 − 0.9 can be acheived as a compromise.

• But if we view a transformer as a transmission line, then we see that the winding
capacitance is in fact a critical part of the circuit. This is a very convenient building
block, especially at lower frequencies when ordinary transmission lines are too
bulky.
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Low Frequencies: A Common Mode Choke
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• We begin by noting that the operation of a simple 1 : 1 transmission line
transformer at low frequency. The input impedance for a common-mode signal
(even mode) is simply given by

Zin =
vs

i1
= jωL+ jωM + R = jω(L+ M)+ R = jωL(1+ k)+ R ≈ jωL(1+ k)

• Assuming ωL � R. Thus the common mode input impedance is very high,
especially at low frequency when a core can boost the inductance to a large value.

• For a differential mode input (odd mode), though, the input impedance is much
lower

Zin =
vs

i1
= jωL − jωM + R = jω(L − M) + R = jωL(1 − k) + R ≈ R
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Common Mode Rejection

• Assuming k ≈ 1. We see that such a structure by its very nature prevents common
mode AC currents from flowing. Furthermore, since a common mode signal
energizes the core, whereas a differential signal does not, the loss will be much
higher for a common mode signal at high frequencies.

• A given excitation can be written as a superposition of the “even” and “odd”
modes. Thus the even component will attenuate more as it travels down the T-line.
Thus at the end of the T-line, we expect the odd mode to survive whereas the even
mode will decay away.
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Broadband Inverter
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• We now excite the transformer as a transmission line with a differential (balanced)
signal, as shown above. Note that at low frequency the circuit simply inverts the
input signal and applies it to the load RL. At high frequency, though, we employ
the transmission line equations. From the ABCD matrix

V1 = cosh γ`V2 + Z0 sinh γ`I2

V2 = I2RL

University of California, Berkeley EECS 217 Lecture 10 – p. 5/17



Broadband Inverter (cont)

• Assume that the differential characteristic impedance Z0 =

q
L−M

C
= RL so that

no reflections occur at the load. Then we have

V1 = (cosh γ` + sinh γ`) V2 = eγ`V2

• We see that the output signal is given by

vL = −V2 = −e−γ`V1

• For the lossless case, γ` = jk`, and thus the circuit behaves like

vL = −e−jk`V1

• Thus the output signal is equal to the input over a broad frequency range

|vL| = |V1|

• The phase of the transfer function is 180◦ as long as k` � 1. The input impedance
Zin = Z0 = RL is likewise matched over a broad frequency range.
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Transmission Line Transformer Balun
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• Consider now the circuit shown above, where the input drives two transformers,
the top configured as a non-inverting delay line and the botton acting like an
inverting delay line, as derived in the last section.

• Using the notation form the figure, by observation we have

I2 = I4

VL = V2 + V4

V1 = V3 = vs

is = I1 + I3

I2 = I4 =
vL

4RS
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T-Line Balun Equations

• Now apply the transmission line equations (assuming a lossless line)

vL = V2 + V4 = cos k`Vs − jZ0 sin k`I1 + cos k`Vs − jZ0 sin k`I3

= 2 cos k`Vs − jZ0 sin k` (I1 + I3)| {z }
is

is = I1 + I3 = jY0 sin k` (V2 + V4)| {z }
vL

+2 cos k` I2|{z}
=I4

• Combining the above equations we have

is =

�
jY0 sin k` +

2 cos k`

4RS

�
vL

vL + jZ0 sin k`is = 2 cos k`vs

vL + jZ0 sin k`

�
jY0 sin k` +

cos k`

2RS

�

vL = 2 cos k`vs

University of California, Berkeley EECS 217 Lecture 10 – p. 8/17



T-Line Balun (cont)

• Finally, we can solve for the output voltage

vL = vs
2 cos k`

1 − sin2 k` + j sin k` cos k` Z0

2RS

• The voltage gain is given by

Gv =
vL

vs

=
2

cos k` + j sin k` Z0

2RS

=
2

e−jk`

• where the last equality holds if we select Z0 = 2RS . We see that the output
voltage is twice the input voltage plus a delay. This relation is a broadband for a
low-loss circuit

|Gv| = 2
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Input Impedance

• We can also derive the input impedance

2vse−jk` + jZ0 sin k`is = 2 cos k`vs

vs

�

2 cos k` − 2e−jk`

�
= j Z0|{z}

2Rs

sin k`is

• Simplifying we have
vs

is
= Rs

• Which shows that the circuit behaves like a 4 : 1 impedance matching circuit.
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A 4:1 Unbalanced Transformer
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• Consider the above circuit. Intuitively, when the transmission line is electrically
short, we can see that the source current is twice as large as the load current. We
thus expect that at impedance match occurs for a load four times as large as the
source.

• We can verify this at high frequency by applying KVL around the source and load
loop

vs = isRS − v2 + i2RL = (i1 + i2)RS − v2 + i2RL

• We can also take a KVL loop around the source

vs = isRS + v1 = (i1 + i2)RS + v1
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4:1 Transformer T-Line Analysis

• Assuming the transformer is acting like a differential transmission line, the current
and voltage are related by

v1 = v2 cos β` + ji2Z0 sin β`

i1 = i2 cos β` + jv2Y0 sin β`

• The above four equations contain four unknowns v1,v2,i1, and i2. Solving for the
load current i2 we have the output power

Po =
1

2
|i2|

2RL

• To find the optimal T-line characteristic impedance Z0 we differentiate the output
power to find that

∂Po

∂Z0

= 0

if

Z0 =

p
RSRL

• The above result holds independent of the T-line length `.
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Optimal Load Impedance

• The optimal load impedance is given by

∂Po

∂RL

= 0 if
RL =

2RS(1 + cos β`)

cos β`
≈ 4RS

• The last equality holds if the line length β` � 1 is sufficiently small.

• The ratio of the load power to the available power is given by

Pa =
v2

s

8RS

Po

Pa

=
1 + cos β`

5

4

�
1 + 6

5
cos β` + cos2 β`

�

• The load power drops to zero if β` = π or if the transmission line approaches a
half-wavelength, ` = λ/2. Since

vL = v1 + v2

• we can see that the load voltage is zero when the phase shift from input to output
is 180◦. So this transformer is only effective when ` � λ/2. Typically we keep
` < λ/10.
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Low Frequency Limit

• At low frequencies the equivalent
circuit of the transformer is
shown. Note that the transmission
line behavior is replaced by
magnetic flux coupling of the
auto-transformer.

• An equivalent circuit for the trans-
former, shown below, can be used
to find the LF cutoff

RL

vs

RS

L

k

L

ideal transformer

k
2
L1

(1 − k
2)L1

N : 1

• In general we see tha the low frequency signal is shunted to ground by the
inductance k2L.
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Ideal (Easy) Analysis

• Since the transformer only works when the electrical T-line length is small, we can
simplify the analysis by assuming that

i1 = i2 = i

v1 = v2 = v

• Thus we have

vL = v1 + v2 = 2v
iL = i

RL =
vL

iL
=

2v

i

Zin =
v

2i

v

i
= 2Zin

RL = 4Zin Zin =
RL

4
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Step Up Transformer
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• The above circuit doubles the current to the load and thus the input impedance is
boosted to Zin = 4RL. Let’s redraw the circuit and analyze it using the ideal
equations

RLvs

RS

+

v
−

+

v
−

+

vin

−

i

i 2i

is = i

vin = v + 2iRL

vL = v = 2iRL

vin = 2iRL × 2 = 4iRL

Zin =
vin

i
= 4RL
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