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What Are Microwave Circuits?

First we must understand where circuit theory comes
from. Crudely speaking, circuit theory is an
approximation to Maxwell’s Eq. valid when structure
dimensions are small relative to the wavelength (at the
highest frequency of interest).

Alternatively, circuit theory is valid when the speed of
light is infinite c → ∞.

Ex: At f = 60 Hz, we have λ = c
f

= 3×10
8

60
= 0.5 × 107

If we arbitrarily require that the dimension be a factor of
a thousand smaller than the wavelength, we have

`

λ
= 10−3 → ` = 5 km
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Circuits at GHz Frequencies

Now let’s consider f = 1 GHz. This corresponds to the
popular cellular bands. Now λ = c/f = 30 cm, so using
the same requirement we have

`

λ
= 10−3 → ` = 0.3 mm

This is a lot more restrictive! We see that this is strictly
only valid for relatively small structures on the Si chip.
So inside a small transistor with a dimension of tens of
microns, certainly circuit theory is valid at this
frequency.

But recall that λ = v/f = c/
√

εµf , so inside the Si
substrate the wavelength for TEM waves drops by
roughtly

√
12.
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Microwave Circuit Theory

Microwave circuit theory is an extension of circuit theory
to higher frequencies where the circuit dimensions
approach the wavelength, ` ∼ λ.

We need this theory in order to avoid solving Maxwell’s
Equations!

We can also use our intuition and experience from
circuit theory (e.g. lumped filter design) and apply it to
higher frequencies. We have to be careful in applying
our inuition.

For instance, a transmission line of lenght λ/4 converts
an open circuit termination into a short circuit! This
behavior is very counterintuitive from a lumped circuit
theory perspective.
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Chip/Package/Board

` ¿ λ

` ∼ λ

` ∼ λ

chip

package

PCB trace

a
n
te

n
n
a

In the above example, the structures “on-chip” may
behave like lumped elements (transistors, inductors,
capacitors, etc.). The leads, board traces, and radiation
structures, though, are “large” relative to the wavelength
and require Microwave Theory.
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Microwave Radar

RX

Target

Radar, invented by Sir Robert Watson-Watt in 1935,
and developed at MRL during WWII (’40 - ’45), allows
us to detect distant objects by observing the microwave
scattering from a target.

In this course we’ll learn to build the basic active and
passive building blocks, such as the oscillators,
amplifiers, mixers, and circulator.
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Radio Block Diagram
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Microwave/RF Circuits

The block diagram above is a typical super-heterodyne
transceiver architecture. The LNA (low-noise amplifier),
the PA (power amplifier), the LO (local oscillator), and
mixers all operate at the “carrier” frequency. We will
learn how to design such building blocks operating
close to the limits of technology (10 GHz − 100′s GHz).
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Maxwell’s Equations

We begin with Maxwell’s famous equations:

∮
S

D · dS =

∫
V

ρdV ∇ · D = ρ
∮

S

B · dS = 0 ∇ · B = 0

∮
C

E · d` = − ∂

∂t

∫
S

B · dS ∇× E = −∂B

∂t

∮
C

H·d` =
∂

∂t

∫
S

D·dS+

∫
S

J·dS ∇× H =
∂D

∂t
+ J
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Maxwell’s Eq. (cont)

E Electric Field [E] = V
m

H Magnetic Field [H] = A
m

D Electric Flux Density [D] = C
m2

B Magnetic Flux Density [B] = Weber
m2

= T = V· s
m2

It’s important to note that these equations follow from
experimental observations:

Gauss’ Law (equivalent to Coulomb Force equation)
from the inverse square law. Also, no magnetic
monopoles have ever been observed.

Faraday’s law of electromagnetic induction. Ampere’s
law in addition to displacement current for consistency
(equivalently charge conservation).
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Constitutive Relations
Force Law: For a charge q moving at velocity v through
an electromagnetic field, the forice experienced by the
charge is given by

f = q(E + v × B)

Ohm’s Law: For a conductor with conductivity σ ( S/m),
the current density J is given by

J = σE

In this class σ is a scalar so the current is in the
direction of the field E.

Convection Current: For a charge density ρ moving with
velocity vp, the current density is

J = ρvp
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Permittivity (Dielectric Constant)

The electric flux density D is related to the electric field
intensity E by

D = εE = εrε0E

ε0 ≈ 8.854 × 10−12 F/m

The relative permittivity εr characterizes the effect of the
atomic and molecular dipoles in the material. For most
microwave materials we assume ε is a scalar constant.
Most problems are characterized by homogeneous,
isotropic, linear, time-invariant materials.

The frequency response of ε is very important as the
imaginary component of ε gives rise to loss at
microwave frequencies.
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Permeability

The magnetic flux density B is related to the magnetic
field H by

B = µH = µrµ0H

µ0 = 4π × 10−7 H/m

The relative permeability µr measures the effect of
constituent atomic and/or molecular magnetic dipole
moments.

Most materials in nature are diamagnetic. The induced
magnetic fields oppose the applied field. But the
response is usually very weak and so µ ∼ 1. This is due
primarily to the response of the electron “orbit” in an
atom.
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Paramegnetic Materials

Some materials have a natural net magnetic dipole
moment. Such materials give a paramagnetic response
which can arise from dipole moments in an atom,
molecules, crystal defects, and conduction electrons.
The dipole moments tend to align with the magnetic
field but are deflected from complete alignment by their
thermal activity.

The fields resulting from the partial alignment adds to
the applied field so µ ≥ 1. It can be shown that this
effect is also relatively weak so that at room
temperature µ ≈ 1 + 10−5
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Ferromagnetics and Ferrimagnetics

Materials with residual magnetization exist where it is
energetically favorable for internal magnetic dipoles to
align spontaneously below a certain (Curie)
temperature. These ferromagnetic and ferrimagnetic
materials exhibit non-linear and large µ factors
∼ 103 − 106.
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Displacement Current

Ampere discovered that the magnetic field in static
situtations can be calcuated by ∇× H = J. Equivalently,

∫
S

∇× H · dS =

∮
C

H · d` =

∫
S

J · dS = I

The above equation is a mathematical identity for any
surface bounded by the contour C. Now Maxwell
realized a flaw in this equation when you consider an
AC current and a capacitor.

Since J ≡ 0 on surface S2, but J 6= 0 for surface S1, this
leads to a contradiction. (see next page)
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Displacement Current (cont)
I

J 6= 0

J ≡ 0

S1

S2

I

To resolve this, Maxwell
introduced a displacement
current to Ampere’s eq.

∇× H = J + Jd

Furthermore, since ∇ · ∇ × A ≡ 0, this implies that
∇ · J = 0, violating charge conservation, unless we
introduce Jd. Maxwell defined

Jd =
∂D

∂t

to account for charge conservation since ∇ · D = ρ.
This means that magnetic fields can be generated by
currents or by changing electric fields.
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Radiation and EM Propagation

The introduction of displacement current allows EM
waves. To see this intuitively, note that in a charge-free
region of space

∇× E = −∂B

∂t

∇× B = µε
∂E

∂t

∂B

∂t
→ ∂E

∂t
→ ∂B

∂t
→ . . .

B

E E E

BB

wave motion

This exchange happens at the speed of light.
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Wave Equation in 3D

We can derive the wave equation directly in a
coordinate free manner using vector analysis

∇×∇× E = ∇×−µ
∂H

∂t
= µ

∂ (∇× H)

∂t

Substitution from Maxwell’s eq.

∇× H =
∂D

∂t
= ε

∂E

∂t

∇×∇× E = −µε
∂2E

∂t2
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Wave Eq. in 3D (cont)

Using the identity ∇×∇× E = −∇2
E + ∇ (∇ · E)

Since ∇ · E = 0 in charge free regions

∇2
E = µε

∂2
E

∂t2

In Phasor form we have k2 = ω2µε

∇2
E = −k2

E

Now it’s trivial to get a 1-D version of this equation

∇2Ex = µε
∂2Ex

∂t2
∂2Ex

∂x2
= µε

∂2Ex

∂t2
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