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Superposition
• If a circuit is linear, then by the principal of superposition, we can analyze the

circuit one source at a time. The total response is the sum of the outputs due to
the individual sources.

• This is clear if we re-write the matrix equation as follows

Ax = b = b1 + b2 + · · ·

• Note that we have partitioned the source terms so that each bk only contains a
single source. Clearly, the solution is given by

x = A−1b1 + A−1b2 + · · · = x1 + x2 + · · ·

• where xk is the solution with source k turned on and all other sources set to zero.
That means that other voltage sources are short circuited (zero voltage) and other
current sources are open circuited (zero current).
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Example: Analyzing a Circuit with Superposition

R1 R2

R3
vs1

is1

is2

v1

• In this example there are three independent sources. When we analyze the circuit
source by source, the circuit is often simple enough that we can solve the
equations directly by inspection.

• First turn of is1 and is2. Zero current means that we replace these sources with
open circuits. The node voltage v1 is therefore by inspection

vv
s1

1
=

R2

R1 + R2

vs1

A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 6 p. 3/?? – p. 3/



Superposition Example (2)

R1 R2

R3
vs1

is1

is2

v1

• Next turn off vs1 (short circuit) and is2 (open circuit). The current is1 will therefore
divide between r2 and r1 and establish a voltage at node v1 (equivalently, it see’s
a parallel combination of R1 and R2

vi
s1

1
=

R2R1

R1 + R2

is1

• Finally, we turn off all sources except is2. Now only R1 and R2 remain (R3 is
dangling)

vi
s2

1
=

R2R1

R1 + R2

is1
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Superposition Example (3)
• By superposition, the node voltage v1 is the sum of the three node voltages due to

each source

v1 = vi
s1

1
+ vi

s2

1
+ vv

s1

1
=

R2

R1 + R2

(vs1 + R1(is1 + is2))

• We can verify the solution by performing KCL directly at node 1

(v1 − vs1)G1 + v1G2 − is1 − is2 = 0

v1(G1 + G2) = vs1G1 + is1 + is2

• The answer here is just as fast but we don’t have any intuition about the operation
of the circuit. We’re perhaps more likely to make an algebraic error if it’s all math
without any thinking.

A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 6 p. 5/?? – p. 5/



Thevenin Equivalent Circuit

+

+

+vth

Rth

“Black Box”

• A powerful theorem in circuit analysis is the Thevenin equivalent theorem, which
let’s us replace a very complex circuit with a simple equivalent circuit model.

• In the black box there can be countless resistors, voltage sources (independent
and dependent), current sources (independent and dependent), and yet the
terminal behavior of the circuit is captured by two elements.

• How can this be? Well, there is a big assumption in that all the resistors are linear
(follow Ohm’s Law) and all dependent sources are also linear.

• The equivalent circuit representation is often called a “black box", since the details
of the circuitry are hidden.
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Thevenin Derivation

+

+

+vth

Rth

“Black Box”

+

v
oc

−

+

vth

−

• Since a circuit is linear, then no matter how complicated it is, it’s response to a
stimulus at some terminal pair must be linear. It can therefore be represented by a
linear equivalent resistor and a a fixed constant source voltage due to the
presence of independent sources in the circuit.

• To find the equivalent source value, called the Thevenin voltage source vth, simply
observe that the open-circuit voltage of both the “black box" and the original circuit
must equal, which means

vth = voc

• In other words, open-circuit the original circuit, find its equivalent output voltage at
the terminals of interest, and that’s vth
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Thevenin Source Resistance

+

+

+vth

Rth

“Black Box”

isc

vth

Rth

• To find equivalent Thevenin source resistance Rth, notice that in order for the
terminal behavior of the two circuits to match, the current flow into a load resistor
has to be the same for any load value. In particular, take the load as a short circuit.

• The output current of the Thevenin equivalent under a short circuit is given by

vth

Rt

• Equating this to the short-circuit current of the original circuitry, we have

isc =
vth

Rt

or equivalently

Rth =
vth

isc

=
voc

isc
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Thevenin Equivalent Example

R1

R2

R3

R4

vs
v2

v3

• In the above circuit, we will calculate the Thevenin equivalent circuit.

• We begin by finding the open-circuit voltage. In this case, it’s a simple application
of the voltage divider.

v3 = v2

R4

R3 + R4

v2 =
R2||(R3 + R4)

R1 + R2||(R3 + R4)
vs

voc = v3 =
R4

R3 + R4

R2||(R3 + R4)

R1 + R2||(R3 + R4)
vs

=
R4R2(R3 + R4)

(R3 + R4)(R1(R2 + R3 + R4) + R2(R3 + R4))
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Thevenin Example (2)

R1

R2

R3

R4

vs
v2

isc

• Next we find the short-circuit current in the original circuit. The resistance loading
the source under this condition is given by

isc = is
R2

R2 + R3

is =
vs

R1 + (R2||R3)
=

vs(R2 + R3)

(R2 + R3)R1 + R2R3

isc =
R2vs

R1R2 + R1R3 + R2R3

Rth =
voc

isc
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Non-Linear Components and Sources
• A non-linear resistor has a non-linear I-V relation. For example

V = r1I + r2I2 + r3I3

or
V = cos(I · Rx)

• A non-linear dependent source is a non-linear function of one or more independent
currents/voltages in the circuit. Some examples of non-linear dependent sources
are:

vk = Ki2j A squarer

ik = Ki2j + Mij A quadratic function

vk = Kvj · vm
A multiplier

vk = Aij + B Isn’t this linear?
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Linear Relations
• By definition, a linear relation means that if two inputs are applied, then the output

of the sum is the sum of the individual outputs. Suppose

y = Kx

then y1 = Kx1 y2 = Kx2

y = K(x1 + x2) = Kx1 + Kx2 = y1 + y2

• Now suppose y = Kx + z. Note that

y1 = Kx1 + z

y2 = Kx2 + z

y = K(x1 + x2) + z = Kx1 + Kx2 + z 6= y1 + y2
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CalculatingRth Directly

+

+

“Black Box”

+

+

“Black Box”

+

No “Deps”

+

vx

−

ix

Rth

• If there are no dependent sources in the “black box”, then you can calculate the
Thevenin equivalent circuit directly by setting the independent source values to
zero. As before, zeroing out sources means shorting voltage sources (zero volts)
and open circuiting current sources (zero current). Now just “inspect" to find the
equivalent Thevenin resistance.

• For the general linear circuit, another approach to find Rth is to probe the circuit
with an independent voltage/ current source while zeroing out all internal sources.
The current / voltage is monitored and the ratio of the test voltage to test current is
the equivalent Rth

Rth =
vx

ix
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Example: By Direct Method

R1

R2

R3

R4

• Let’s redo the same example but now we zero out the voltage source and redraw
the circuit. Now we can readily find Rth by simply observing that the resistors in of
the original circuit are in series/parallel:

Rth = R4||(R3 + R1||R2)

=
R4R3 + R4R1||R2

R4 + R3 + R1||R2

=
R4R3(R1 + R2) + R4R1R2

(R4 + R3)(R1 + R2) + R1R2
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Thevenin Example (2)

R1

R2

R3

vs1

v1

+
+

vx

−

ix

Gv1

• Consider the above circuit with two sources. We find the equivalent open circuit
voltage by writing KCL at the intermediate node.
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Norton Equivalent Circuit

+

+

i
N RN

“Black Box”

• In a similar vein, we can also replace a complex circuit with a Norton equivalent
circuit, which contains a current source and a shunt source resistance.

• To find the equivalent source value, we find the short circuit current for both the
model and the original circuit and note that

in = isc

• Similarly, to find the Norton resistance, we note that if we open-circuit the model,
the output voltage is given by

voc = inRn
or

Rn =
voc

isc

• This is the same exact equation as before.
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Source Transformations

i
N RN

+vth

Rth

• A trivial application of Norton or Thevenin’s Theorem shows us that we can
transform from one representation to the other. For instance, starting from the
Thevenin, let’s find the Norton. Short circuit the Thevenin to find

in = isc =
Vth

Rth

and it’s trivial to see that Rn = Rth.
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Norton Equivalent Example

+

R1

R2

R3

+

vs

−

is1

• For the above circuit, find the Norton equivalent circuit. We first start out by finding
the short-circuit current.
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Norton Example (2)

+

R1

R2

R3

+

vs

−

is1

• Next we find the open-circuit voltage.
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Norton Example (3)

+

R1

R2

R3

+

vs

−

is1

• The same calculation can be done using superposition.
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Voltage Amplifier Example

+

R1

R2

R3

+

vx

−

+

vs

−

Kvx
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Transconductance Amplifier Example

R1

R2

R3

+

vx

−

+

vs

−

Gvx
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Maximum Power Transfer

+vth

Rth

RL

• An important question arises in many electrical circuits when we wish to interface
one component to another while maximizing the power transfer to the second
component.

• A good example is a battery with internal resistance and a motor. What’s the best
“load" resistance to choose in order to maximize the power transfer?

• Interestingly, if we maximize the current or voltage transfer, the power transfer is
exactly zero.
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Maximum Power Transfer (cont)

+vth

Rth

RL

• No matter how complicated the black box source, we can represent it as a
Thevenin equivalent circuit, vth and Rth.

• The general procedure is to find the power through the load and then to find the
optimal load value. We can take the derivative of the load power with respect to
the load resistance and set it equal to zero (occurs at only a maximum or
minimum). A second derivative test confirms that it’s a peak.

PL = I2

LRL =

„

vth

RL + Rth

«

2

RL

dPL

dRL

=

„

vth

RL + Rth

«

2

− 2RLv2

th

„

1

RL + Rth

«

3

= 0

(RL + Rth) = 2RL → RL = Rth

The optimum load resistance is equal to the Thevenin Equivalent Value, or it’s Matched.
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Example of Maximum Power Transfer

Amp
+vth

Rth

RL

RL

• A common example occurs when designing amplifiers in RF applications. For a
receiver, we wish to extract the maximum possible power from the antenna (since
the received signal can be very weak). We can represent the antenna by its
Thevenin equivalent source resistance Rth.

• The load resistance, which is the input of the amplifier in this case, should present
a value that is matched to the antenna impedance.
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The Wheatstone Bridge

+

R1

R2

R3

Rx

VG

• The Wheatstone Bridge (originally invented by Samuel Hunter Christie in 1833 and
then popularized by Sir Charles Wheatstone in 1843) is used to measure an
unknown resistance. It is highly accurate and only requires an adjustable resistor
(or set of well known calibrated resistors) and a method of measuring zero current,
such as a galvanometer.

• Since we only need to measure if the current is zero, we can do this very precisely
with a galvanometer.

• The Wheatstone bridge is often used with strain gauges, thermocouples, and other
transducers.
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Wheatstone (2)

+

R1

R2

R3

Rx

VG

• The operation of the Wheatstone Bridge is as follows. One leg of the bridge
contains an unknown resistance which we would like to find. The other leg
contains an adjustable resistor R2 (of known value). The goal is to adjust the
resistor R2 until the circuit is “balanced", in other words until no current flows
through the galvanometer.

• Under the balanced condition, there is no current Ig , so the current in R1 and R2

is the same, say I1, and the current through R3 and Rx is also the same, I3. By
KVL, under the balanced condition Vg = 0, we have

I3R3 = I1R1

I3Rx = I1R2
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Wheatstone (3)
• Taking the ratio of these two currents, we have

R3

Rx

=
R1

R2

• Which means that the unknown resistance if found

Rx =
R3

R1

R2

• In practice, we vary R2 until we achieve balance. In some commercial units, the
scale factor R3/R1 can be changed as well.
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Wheatstone Example

Suppose that R1 = 100Ω, R2 can be adjusted from 1Ω steps from 0 to 100Ω, and R3

can be selected to be 100Ω, 1 kΩ, 10 kΩ, or 100 kΩ. (a) If the bridge is balanced with
R2 = 36Ω and R3 = 10kΩ, find Rx. (b) What’s the largest Rx that can be measured?

(c) For R3 = 10 kΩ, what is the accuracy of the measurement?

• (a) This is a trivial application of the equations

Rx =
R3

R1

R2 =
10, 000

100
36 = 3600Ω

• (b) The largest Rx is given by

Rx,max =
R3,max

R1

R2,max =
100, 000

100
100 = 100 kΩ

• (c) The accuracy of the measurement is set by the scale factor. As R2 changes by

1Ω, the value of Rx changes by R3

R1
, which is equal to 100Ω.
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