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The Magic of Sinusoids

Any linear circuit  
With L,C,R,M 

and dep. sources  
 

Amp 
Scale 

Phase Shift 

• When a linear, time invariant (LTI) circuit is excited by a sinusoid, it’s output is a
sinusoid at the same frequency. Only the magnitude and phase of the output differ
from the input. Sinusoids are very special functions for LTI systems.

• The “Frequency Response” is a characterization of the input-output response for
sinusoidal inputs at all frequencies.

• Since most periodic (non-periodic) signals can be decomposed into a summation
(integration) of sinusoids via Fourier Series (Transform), the response of a LTI
system to virtually any input is characterized by the frequency response of the
system.
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Example: Low Pass Filter (LPF)
• Input signal: vs(t) = Vs cos(ωt)

• We know that in SS the amplitude and phase will change:
vo(t) = K · Vs

| {z }

Vo

cos(ωt + φ)

• The governing equations are:

vo(t) = vs(t) − i(t)R

i(t) = C
dvo(t)

dt

vo(t) = vs(t) − RC
dvo(t)

dt

vo(t) = vs(t) − τ
dvo(t)

dt

vs

vo

R

C
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LPF the “hard way"
• Plug the known form of the output into the equation and verify that it can satisfy

KVL and KCL

Vs cos(ωt) = Vo cos(ωt + φ) − τωVo sin(ωt + φ)

Use the following identities:

cos(x + y) = cos x cos y − sin x sin y

sin(x + y) = sin x cos y + cos x sin y

Vs cos(ωt) = Vo cos(ωt)(cos φ − τω sin φ) − Vo sin(ωt)(sin φ + τω cos φ)

• Since sine and cosine are linearly independent functions:

a1 sin(ωt) + a2 cos(ωt) = 0

implies that a1 = 0 and a2 = 0.
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LPF: Solving for response
• Applying the linear independence gives us

−Vo sin φ − Voτω cos φ = 0

this can be converted into
tan φ = −τω

• The phase response is therefore

φ = − tan−1 τω

Likewise we have
Vo cos φ − Voτω sin φ − Vs = 0

Vo(cos φ − τω sin φ) = Vs

Vo cos φ(1 − τω tan φ) = Vs

Vo cos φ(1 + (τω)2) = Vs

Vo(1 + (τω)2)1/2 = Vs

• The amplitude response is therefore given by

Vo

Vs
=

1
p

1 + (τω)2
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LPF Magnitude Response
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LPF Phase Response
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dB: Honor the inventor of the phone...
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dB = 20 log
Vo

Vs

• The LPF response quickly decays to zero

• We can expand range by taking the log of the magnitude response

• dB = deciBel (deci = 10)
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Why 20? Power!
• Why multiply log by “20” rather than “10”?

• Power is proportional to voltage squared:

dB = 10 log

„

Vo

Vs

«2

= 20 log

„

Vo

Vs

«

• At various frequencies we have:

ω = 1/τ →

„

Vo

Vs

«

dB

= −3dB

ω = 100/τ →

„

Vo

Vs

«

dB

= −40dB

ω = 1000/τ →

„

Vo

Vs

«

dB

= −60dB

• Observe: slope of Signal attenuation is 20 dB/decade in frequency.

• Alternatively, if you double the frequency, the attenuation changes by 6 dB, or 6
dB/octave.
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Complex Exponential
• Eulor’s Theorem says that

ejx = cos x + j sin x

• This can be derived by expanding each term in a power series.

• If take the magnitude of this quantity, it’s unity

|ejx| =
p

cos2 x + sin2 x = 1

• That means that ejφ is a point on the unit circle at an angle of φ from the x-axis.

Any complex number z, expressed as have a real
and imaginary part z = x + jy, can also be in-
terpreted as having a magnitude and a phase.

The magnitude |z| =
p

x2 + y2 and the phase
φ = ∠z = tan−1 y/x can be combined using the
complex exponential

x + jy = |z|ejφ

ℜ(z)

ℑ(z)

z = x + jy

|z
|

φ

ejφ

|e
jθ |

=
1

z = |z|ej 6 z = mejφ

x

y

φ = 6 z
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Eulor’s Theorem and The Circle
• This implies that ejωt is nothing but a point rotating on a circle on the complex

plane. The real part and imaginary parts are just projections of the circle, which by
trigonometry we know equal the cosine and sine functions.

• We can also express cos and sin in terms of e as follows

cos x =
ejx + e−jx

2

sin x =
ejx − e−jx

2j

• To see an animation of these equations, click below:

ejωt rotating around circlea e−jωt rotating around circleb

ejωt + e−jωt oscillates on the real axisc

ahttp://rfic.eecs.berkeley.edu/ee100/pdf/exp1.gif
bhttp://rfic.eecs.berkeley.edu/ee100/pdf/exp2.gif
chttp://rfic.eecs.berkeley.edu/ee100/pdf/exp3.gif
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Why introduce complex numbers?
• They actually make things easier!

• Integration and differentiation are trivial with complex exponentials:

d

dt
ejωt = jωejωt

Z

ejωxdx =
1

jω
ejωt

• Any ODE is now trivial algebraic manipulations ... in fact, we’ll show that you don’t
even need to directly derive the ODE by using phasors (phasor is essentially a
shorthand notation for a complex number)

• The key is to observe that the current/voltage relation for any element can be
derived for complex exponential excitation
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Complex Exponential is Powerful
• To find steady state response we can excite the system with a complex exponential

LTI System 

H
ejωt |H(ω)|ej(ωt+ 6 H)

Magnitude 

Response

Phase

Response

• At any frequency, the system response is characterized by a single complex
number H:
• The magnitude response is given by |H(ω)|

• The phase response is given by ∠H

• We see that the complex exponential is an “eigenfunction" of the system. It is used
to probe the system.

• Since a sinusoid is a sum of complex exponentials (and because of linearity!), we
can also probe a system by applying a real sinusoidal input.
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LPF Example: The “soft way”
• Let’s excite the system with a complex exponential

vs(t) = vo(t) + τ
dvo

dt

vs(t) = Vsejωt

vo(t) = |Vo|e
j(ωt+φ) = Voejωt

• Now substitute into the original equation

Vsejωt = Voejωt + τ · jω · Voejωt

divide out the non-zero common factors

Vs = Vo(1 + jω · τ)

Vo

Vs
=

1

1 + jω · τ
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Magnitude and Phase Response
• The system is characterized by the complex function

H(ω) =
Vo

Vs
=

1

1 + jω · τ

• The magnitude and phase response match our previous calculation

|H(ω)| =

˛

˛

˛

˛

Vo

Vs

˛

˛

˛

˛

=
1

p

1 + (ωτ)2

∠H(ω) = − tan−1 ωτ
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Why did it work?
• The system is linear:

ℜ[y] = L(ℜ[x]) = ℜ[L(x)]

• If we excite system with a sinusoid:

vs(t) = Vs cos(ωt) = Vsℜ[ejωt]

• If we push the complex exponential through the system first and take the real part
of the output, then that’s the “real” sinusoidal response

vo(t) = Vo cos(ωt + φ) = Voℜ[ej(ωt+φ)]
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And yet another perspective

LTI System 

H
ejωt |H(ω)|ej(ωt+ 6 H)

LTI System 

H

LTI System 

H

e−jωt |H(−ω)|ej(−ωt+ 6 H(−ω))

cos(ωt) =
ejωt + e−jωt

2
H(ω)ejωt + H(−ω)e−jωt

2

• Another way to see this is to observe the system is linear so that

y = L(x1 + x2) = L(x1) + L(x2)

• To find the response to a sinusoid, we can find the response to ejωt and e−jωt

and sum the results.
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Another perspective (cont.)
• Since the input is real, the output has to be real:

y(t) =
H(ω)ejωt + H(−ω)e−jωt

2

• That means the second term is the conjugate of the first:

|H(−ω)| = |H(ω)|

(even function)
∠H(−ω) = −∠H(ω) = −φ

(odd function)

• Therefore the output is:

y(t) =
|H(ω)|

2

“

ej(ωt+φ) + e−j(ωt+φ)
”

= |H(ω)| cos(ωt + φ)
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“Proof” for Linear Systems
• For an arbitrary linear circuit (L,C,R,M , and linear dependent sources),

decompose it into linear sub-operators, like multiplication by constants, time
derivatives, or integrals:

y = L(x) = ax + b1
d

dt
x + b2

d2

dt2
x + · · · +

Z

x +

ZZ

x + · · ·

• For a complex exponential input this simplifies to:

y = L(ejωt) = aejωt + b1
d

dt
ejωt + b2

d2

dt2
ejωt + · · · +

Z

ejωt +

ZZ

ejωt + · · ·

y = aejωt + b1jωejωt + b2(jω)2ejωt + · · · +
ejωt

jω
+

ejωt

(jω)2
+ + · · ·

• Note that every term is of the form ejωt times a constant, which when grouped
together gives

y = ejωt

„

a + b1jω + b2(jω)2 + · · · +
1

jω
+

1

(jω)2
+ + · · ·

«

| {z }

H
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“Proof” (cont.)
• The amplitude of the output is the magnitude of the complex number and the

phase of the output is the phase of the complex number

y = ejωt

„

a + b1jω + b2(jω)2 + · · · +
1

jω
+

1

(jω)2
+ + · · ·

«

| {z }

H

or

y = ejωt|H(ω)|ej∠H(ω)

ℜ[y] = |H(ω)| cos(ωt + ∠H(ω))
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Phasors
• With our new confidence in complex numbers, we go full steam ahead and work

directly with them ... we can even drop the time factor ejωt since it will cancel out
of the equations.

• When a circuit is excited by a sinusoidal input, we assign the source a “phasor”
with magnitude and phase equal to the source. Then we analyze the circuit
assuming all voltages/currents are sinusoidal, which can be represented by the
shorthand phasor form.

• Excite system with a phasor: fV1 = V1ejφ1 = V1∠φ1

• Response will also be phasor: fV2 = V2ejφ2 = V2∠φ2

• We see that a phasor is nothing more than a complex number which represents
the complex exponential form of the voltage/current where we divide out the time
dependence.
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CapacitorI-V Phasor Relation
• Find the phasor relation for current and voltage in a capacitor:

ic = C
dvc(t)

dt

• Assume the current/voltage can be written in a complex exponential form

ic(t) = Icejωt

vc(t) = Vcejωt

• Substitute in the governing equation

Icejωt = C
d

dt
Vcejωt = jωCVcejωt

Icejωt = jωCVcejωt

or directly in Phasor form
Ic = jωCVc
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