EECS 242: Linearization Efficiency Enhancement and Power Combiners

Professor Ali M Niknejad Advanced Communication Integrated Circuits

University of California, Berkeley

Linearization

Polar Modulators

- Polar modulators are gaining popularity by require complex feedback and/or chip to external PA interaction
- Modulation bandwidth is a limiting factor
- In a digital system, the magnitude/phase signal are generated directly and fed into an offset PLL and PA supply voltage

Feedback Loops with PA

- Need loop gain, stability a big concern, modulation bandwidth
- Envelope feedback only works for AM-AM nonlinearity
- Cartesian requires linear mixers and good amplitude/ phase matching
- Complexity...

UC Berkeley, EECS 242

Digital Predistortion

- In a modern system a dynamic predistortion circuit can compensate for process/ temp variations
- Can implement predistortion at baseband
- 100k gates = 1 pad

Microwave Feedforward

- Basestations use feedforward linearization since calibariton is a possibility.
- Use couplers

Dynamic PA

- Envelope tracking supply and dynamic class-A
- Efficiency always close to peak efficiency of amplifier (say 30%) regardless of PAR
- Need a very fast DC-DC converter

UC Berkeley, EECS 242

How Big?

- The amount of power that we can extract from a PA device is limited by the output imepdance of the device. As the device is made larger to handle a higher DC current (without compromising the f_T), the lower the output impedance.
 - For a "current source" style of PA, eventually the device is so large that power is lost in the device rather than the load. This is the attraction of a switching PA.

Gain vs. Output Power Tradeoff

UC Berkeley, EECS 242

Power Devices (cont)

	Finger width	MSG	Idc
1	1µm	7.6dB	25mA
	2µm	8.4dB	47mA
	4µm	6.8dB	94mA

Copyright © Prof. Niknejad 11

Power Combining (cont)

- But for a non-switching PA we must perform some power
 combining to use more than one device. This way we can
 transform the load into a higher
 impedance seen by each PA.
- The power combining networks are lossy and large. We'll come back to them later.

Can we "wire" PAs together?

Note that we cannot simply "wire" PAs together since the impedance seen by each PA increases by N if we connect N in parallel:

$$R_{PA} = \frac{V_L}{I_L/N} = NR_L$$

This means that each PA delivers less power for a fixed swing

$$P_{PA} = \frac{V_{swing}^2}{2R_{PA}}$$

 There is also "load pulling" effects if the sub-PAs are not perfectly in phase

Outphasing LINC Amplifier

- Decompose the AM/PM signal into two PM signals
- The two PM signals can get amplified by two non-linear PA's. These can be saturated and efficient amplifiers.
- By combining the two signals, the amplitude modulation is restored at the antenna.
- How to combine signals? Simple current mode will present a timevarying load to each PA. Coupler or isolator will waste power.

UC Berkeley, EECS 242

Outphasing Math

$$\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$
$$\cos(\omega t + \phi) + \cos(\omega t - \phi) = 2\cos(\phi)\cos(\omega t)$$
$$\cos(\omega t + \cos^{-1}A(t)) + \cos(\omega t - \cos^{-1}A(t)) = 2\cos(\cos^{-1}A(t))\cos(\omega t)$$
$$\cos(\omega t + \cos^{-1}A(t)) + \cos(\omega t - \cos^{-1}A(t)) = 2A(t)\cos(\omega t)$$

- In theory all we need to do is to compute the inverse cosine of the AM waveform to generate our outphasing signals
- In practice, we can use a DSP to calculate these signals since the envelope rate is at the modulation rate and digital techniques work well
- Power combining is the main difficulty. *UC Berkeley, EECS 242*

Doherty Amplifier Concept

Must efficiently combine power without increasing $V_{swing}_{\textit{Copyright} © \textit{Prof. Niknejad}}$ 16

Doherty Amplifier Block Diagram

Quarter wave line used as an impedance inverter. Can be realized with LC equivalent.

UC Berkeley, EECS 242

Doherty Details

- Small signal region: auxiliary amplifier is off
- When the input crosses the threshold, the action of the auxiliary $Z_{1} = \frac{Z_{T}^{2}}{R_{L}(1 + \frac{I_{2}}{I_{1T}})}$ amplifier is to dynamically lower the load seen by the main load seen by the main PA
 - Finally, both amplifiers operate at the peak

Doherty Amplifier Operation

Auxiliary amplifier actively changes load impedance of the main amplifier

Lumped Doherty Implementation

- Can use lumped elements to realize 90° phase shift
- The CLC line is an impedance inverter that also provides VDD for the aux amp
- The LCL line is embedded into the matching network and provides 90° phase shift
- Simulations show an improved efficiency

Zhao, M. Iwamoto, D. Kimball, L. Larson, P. Asbeck

University of California, San Diego UC Berkeley, EECS 242

LC Matching Networks

- Matching networks are needed to drive output power to the load, which has a fixed impedance.
 - Large output powers require a large transformation ratio, and low voltage operation means high currents in the CMOS stage (sensitive to series resistance).
- 30 dBm of output power requires a matching ratio of 100 !

$$P_L = m \frac{V_{SW}^2}{2R_L} < m \frac{V_{DD}^2}{2R_L}$$

 $P_L < m \cdot \frac{1 \mathrm{V}^2}{2 \cdot 50 \Omega} = m \times 10 \mathrm{mW}$

Copyright © Prof. Niknejad 21

LC Matching Network Loss

 ω_0

- The power loss of integrated matching networks is important.
- The insertion loss can be derived by making some simple approximations
- The final result implies that we should minimize our circuit Q factor and maximize the component Q_c

$$P_{in} = P_L + P_{diss}$$

$$IL = \frac{P_L}{P_{in}} = \frac{P_L}{P_L + P_{diss}} = \frac{1}{1 + \frac{P_{diss}}{P_L}}$$

$$W_m = \frac{1}{4}Li_s^2 = \frac{1}{4}\frac{v_s^2}{4R_s^2}L$$

$$\times W_m = \frac{1}{4}\frac{v_s^2}{4R_s}\frac{\omega_0 L}{R_s} = \frac{1}{2}\frac{v_s^2}{8R_s}Q = \frac{1}{2}P_L \times Q$$

$$P_L = \frac{v_L^2}{2R_s} = \frac{v_s^2}{4 \cdot 2 \cdot R_s} = \frac{v_s^2}{8R_s}$$

$$\omega_0(W_m + W_e) = Q \times P_L$$

$$P_{diss} = \frac{P_L \cdot Q}{Q_c}$$

$$IL = \frac{1}{1 + Q}$$

 $1 + \frac{3}{6}$

Multistage Matching

UC Berkeley, EECS 242

Approximate Insertion Loss

$P_{diss} = \frac{NQP_L}{Q_u}$			
	N	$Q~({\rm Eq.}~7.125)$	IL (dB) (Eq. 7.128)
$II = \frac{1}{1}$	1	9.95	-1.24
$IL = \frac{1}{1 + N\frac{Q}{Q}}$	2	3	-0.79
Qu	3	1.91	-0.76
	4	1.47	-0.78
$IL = \frac{1}{\sqrt{1}}$	5	1.23	-0.81
$1 + \frac{N}{Q_u} \sqrt{\left(\frac{R_{hi}}{R_{lo}}\right)^{1/N} - 1}$	6	1.07	-0.85

- Suppose a power amplifier delivering 100 W of power has an optimal load resistance of .5, but needs to drive a 50 IΩ antenna.
- Design a matching networkassuming that the component Q's of 30 are available.
- First note that a matching factor of m = 50/.5 = 100 is needed.
- Table above shows that 3 stages is optimum

Technology Scaling

UC Berkeley, EECS 242

Technology Scaling

source: Reynaert

Quarter Wave Transformer

$$P_L = \frac{|V^+|^2}{2Z_0} (1 - |\rho_L|^2) \qquad IL = \frac{P_L}{P_{in}} = \frac{1 - |\rho_L|^2}{e^{2\alpha\lambda/4} - |\rho(\lambda/4)|e^{-2\alpha\lambda/4}}$$

- Quarter wave line is a nice way to impedance match source and load. T-line comes for free since we can use the board trace at high frequency.
- How does this vary with matching ratio?

T-Line Loss

 For FR4 and other lossy dielectrics, the IL can be quite high. Multi-section T-line helps (lower Q) but area is a big constraint.

UC Berkeley, EECS 242

Transformer Matching

$$IL = \frac{R_L}{r_1 + r_2 + R_L + \left(\frac{L_2}{M}\right)^2 r_1 + \frac{r_1(r_2 + R_L)^2}{\omega^2 M^2}}$$

 Key result: loss is nearly independent of the matching ratio!

UC Berkeley, EECS 242

Copyright © Prof. Niknejad 29

 $IL \approx \frac{R_L}{r_1 + r_2 + R_L + \frac{r_1}{N^2 Q_2^2}}$

Simbürger PA Interstage Drive

- Simburger and co-authors demonstrated that on-chip transformer can be used to drive large bipolar PA devices
- Output power ~ 5W, 55% PAE

Simbürger Transformer

- Siemens team showed that on-chip transformers were useful for PA interstage matching.
- Can they be used for the output stage as well? ... Caltech DAT

Planar Transformer Layout

- Moderately high k factor transformers can be realized using two metal layers
- Different layout styles offer an asymmetric primary/ secondary, a symmetric prim/sec, and a fully balanced and symmetric prim/sec

Transformer Turns Ratio

- With a planar layout, turns ratio can be obtained from omitting turns on the secondary or by connecting secondary turns in parallel
- Parallel connection offers lower loss on secondary

High Turns 3D Ratio Transformers

Balun Layout

- Symmetric structures can be used to build baluns.
- Baluns are a natural fit in fully differential circuits.

Lumped Modeling of Transformer

- Symmetric 2π model
- RL network models frequencydependent loss
- Winding capacitance for SRF
- Asymmetric substrate network
Comparison of Results

- Necessary to match both y, z parameters instead of sparameters only
- Good match up to high frequencies

Transformer Resonant Modes

- Two modes due to odd and even excitation.
- In "even" mode the coupling capacitor Cc is not excited.

Transformers Comparison

- Paper published at RFIC 2004:
 - "Microwave Performance of Monolithic Silicon Passive Transformers", Mounir. Y. Bohsali and Ali. M. Niknejad
 - Compare various transformer layouts
 - Define metric that takes into account bandwidth

Shunt versus Planar

- Planar versus shunt have similar behavior below "resonance" with 2-3 dB of loss.
- Series structure has much lower resonance frequency.

UC Berkeley, EECS 242

Transformer Bandwidth

- Define a new metric: bandwidth over which gain is within 1 dB of "optimal" gain (for a bi-conj. match)
- Planar structure has very good bandwidth (50-150%), and other structures are worse, but series structure is significantly worse.
 UC Berkeley, EECS 242

Transmission Line Balun

- Turn parasitic coupling capacitance into a distributed broadband transmission line!
- Excite the differential mode rather than the odd mode.

UC Berkeley, EECS 242

Prof. Niknejad 42

Broadband Inverter

- The voltage at the load is inverted if the length of the line is small (~1/10 wavelength)
- Note that line excited with both odd and even mode at source but higher Z0 and loss of line rejects even mode.

LC Coupler

- Lumped 180° coupler
- Low bandwidth (20%)
- Element values

$$\frac{1}{\omega C} = \omega L = \sqrt{2}Z_0$$

LC Balun

UC Berkeley, EECS 242

- Essentially a bridge with phase lead and lag networks.
- Bandwidth? Depends on Q of match since this is just a high-pass and low-pass matching network.

 $Z_c = \sqrt{R_i R_L}$

$$L = \frac{Z_c}{\omega} \quad C = \frac{1}{\omega Z_c}$$

Measured Lumped Balun

20% fractional bandwidth
IL low due to substrate
Phase/amplitude balance relatively poor.

Frequency	5.8-6.8 GHz
Return Loss	11 dB
Insertion Loss	0.7 dB
Amplitude Imbalance	0.5 dB
Phase Imbalance	3.6°

An Integrated Double Balanced Mixer on Multilayer Liquid Crystalline Polymer (M-LCP) Based Substrate

Wansuk Yun¹, Vinu Govind¹, Sidharth Dalmia², Venky Sundaram¹, Madhavan Swaminathan¹, and George E. White²

¹Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA 30332, U.S.A, 404-385-6417
² Jacket Micro Devices, Suite 213, 75 5th Street, Altanta, GA 30308, USA, 404-526-6046

UC Berkeley, EECS 242

Transmission Line Balun

 This works as a balun over a very broad band. If length is quarter wavelength, the even mode is rejected at center frequency.

$$G_v = \frac{v_L}{v_s} = \frac{2}{\cos k\ell + j \sin k\ell \frac{Z_0}{2R_s}} = \frac{2}{e^{jk\ell}} = 2e^{-jk\ell}$$

UC Berkeley, EECS 242

Marchand Balun

- Improved bandwidth
- Less sensitivity to even-mode impedance
- Requires two quarter wave structures.

Wilkinson Power Combiner

- Theoretically we cannot build a *lossless* 3 port device with isolation and power combining.
- The Wilkinson uses a resistor that is normally "open circuited" (even mode) and does not generate loss.
- Effective for high frequency designs or using LC circuit at low frequency.

Cal Tech DAT

 Use virtual grounds wisely to turn 1:1 coupled lines into a transformer loop.

UC Berkeley, EECS 242

Transformer FOM

- Unlike inductor Q factor, there is no obvious "silver bullet"
 FOM for transformers.
- For power combining applications, the maximum power gain (bi-conjugate match) has been used as a figure of merit
- For a simple 1:1 transformer, the maximum gain is a function of only the *Q* and *K* factors

$$G_{max} = \frac{y_{21}}{y_{12}} (k - \sqrt{k^2 - 1}) = k - \sqrt{k^2 - 1}$$
$$Z = \begin{pmatrix} R_p + j\omega L_p & j\omega M \\ j\omega M & R_s + j\omega L_s \end{pmatrix}$$
$$k = \frac{2\Re(z_{22})\Re(z_{11}) - \Re(z_{21}z_{12})}{|z_{21}z_{12}|}$$
$$k = \frac{2R_x^2 + \omega^2 M^2}{\omega^2 M^2} = \frac{2R_x^2 + \omega^2 K^2 L^2}{\omega^2 K^2 L^2}$$
$$G_{max}(Q, K) = 1 + \frac{2}{Q^2 K^2} - 2\sqrt{\frac{1}{Q^4 K^4} + \frac{1}{Q^2 K^2}}$$

UC Berkeley, EECS 242

Transformers for Power Combining

- Notice that relatively low insertion loss is possible with moderate on-chip Q and K factors, thus allowing fully-integrated transformers
- Connecting 1:1 transformers in series and shunt, we can perform efficient power combining *independent* of the number of sections [Caltech DAT architecture]

Transformer Power Combining Layout

- Very simple layout
- Don't get DAT benefit → have extra "leads" that waste power
- But can turn off individual stages for power back-off
- Can easily scale power by adding more stages: design core driver stage

Fully Integrated Dual Mode CMOS PA

Peak Output Power Mode

Power Back-off Mode

Power Combining and Control

Power Control and Efficiency Enhancement

Load Modulation

$$Z_{m,j} = \frac{\left(R_L + \sum_{i=1}^N m_i^2 \cdot R_{PA,i}\right) \cdot V_{pa,j}}{m_j \cdot \sum_{i=1}^N m_i \cdot V_{pa,i}} - R_{PA,j} \longrightarrow R_m = \frac{R_L}{N \cdot m^2}$$
$$P_o = N^2 \cdot m^2 \cdot \frac{V_p^2}{2R_L}$$

- In general there is no isolation in the transformer so the load current of one primary will "pull" the impedance of another primary.
- It's only under the special circumstance that all windings are driven in phase that we obtain isolation.

Efficiency at Back-Off

- When all four stages are on, each PA see's $\frac{1}{4}$ of the load.
- Suppose 2 stages are turned off. Then the PA's see ½ the load. The voltage swing at the output drops, but the voltage on each primary remains the same!
- For Class B operation, we can theoretically achieve the same efficiency at back-off.

Power Back-Off Mode

$$R = \frac{1}{3}R_L$$

$$A_{unit} = gm \cdot \frac{1}{3}R_L$$

$$V_o = A_{unit} \cdot V_i = gm \cdot \frac{1}{3}R_L \cdot \frac{3}{4}V_{i,\max} = V_{o,\max}$$

 $\eta_{overall} = \eta_{unit} = \eta_{max}$

$$A_{overall} = N \cdot A_{unit} = gm \cdot R_L$$

$$P_{out} = N \cdot P_{unit} = 3 \cdot \frac{1}{2} \frac{V_o^2}{\frac{1}{3}R_L} = \frac{9}{2} \frac{V_o^2}{R_L} = \frac{9}{16} P_{peak}$$

- Say we back-off the input by 3/4.
- If we turn off one amplifier, the load seen by each amplifier is now 1/3
- But the output voltage is still at the peak optimal value
- The overall efficiency is therefore at the peak value.

A 1.2V, 2.4GHz Fully Integrated Linear CMOS PA with Efficiency Enhancement

CICC 2006 Gang Liu^{1,2}, Tsu-Jae King Liu² Ali M. Niknejad^{1,2}

Berkeley Wireless Research Center¹ Electrical Engineering and Computer Sciences² University of California, Berkeley, CA, USA

Simplified 4-Way Combiner Schematic

- Combing power from 4 unit amplifiers
- Centering at 2.4-GHz

UC Berkeley, utput, matching tuned by switched cap at back offerof. Niknejad 61

Schematic of Each Unit Amplifier

UC Berkeley, EECS 242

Cascode Layout

UC Berkeley, EECS 242

Die Microphotograph

Transformer & Cap Array

Single-Tone Test

Freq = 2.4-GHz, Peak Power Mode

UC Berkeley, EECS 242

Two-Tones Test

Freq = 2.4-GHz, 1-kHz tone spacing, Peak Power Mode

UC Berkeley, EECS 242

Measured Efficiency at Back-Off

Note: at 2.5-dB back-off, one unit amplifier was turned off.

UC Berkeley, EECS 242

Measurements with EDGE Signals

Freq = 2.4-GHz, Peak Power Mode

UC Berkeley, EECS 242

Measurements with 802.11g Signals

 $P_{out} = 14.5 - dBm$ EVM = 4.48%

Freq = 2.4-GHz, Peak Power Mode

UC Berkeley, EECS 242

EVM vs Output Power

Table of Performance

Technology	0.13-µm RF CMOS
Supply voltage	1.2-V
DC Current	114-mA
P _{-1dB}	24-dBm
Drain efficiency	25%
Saturated Power	27-dBm
Drain efficiency	32%
A 5.8 GHz Linear Power Amplifier in a Standard 90nm CMOS Process using a 1V Power Supply

RFIC 2007

Peter Haldi, Debopriyo Chowdhury, Gang Liu and

Ali M. Niknejad

Berkeley Wireless Research Center, Dept. of EECS, UC Berkeley, Berkeley, CA 94704, USA

UC Berkeley, EECS 242

New Transformer Network

- Figure "8" style layout minimized the impact of lead inductance
- Lateral coupling used since top metal layer is most conductive and most distant from substrate
- Very good isolation characteristic due to flux inversion

UC Berkeley, EECS 242

Improved Layout...

- Using two primary windings
 - Improved coupling
 - Lower loss (current crowding at edge of conductors)
 - More symmetric primary/secondary for optimal power transfer

UC Berkeley, EECS 242

Prototype PA in Digital CMOS

- Four stage differential design
- Single-ended
 50Ω output
- Thin oxide
 90nm
 transistors

UC Berkeley, EECS 242

Measured Output Power

 Peak power is 24 dBm. Good match to simulation up to 1dB compression point.

UC Berkeley, EECS 242

Measured Efficiency

PA Linearity

- IM3 = 28 dBc at output power of 20.5 dBm (200 MHz)
- IM3 has tone spacing dependence due to lack of good bypass (class AB stage). Verified with packaged version. UC Berkeley, EECS 242

Output Power vs Frequency

UC Berkeley, EECS 242

CMOS "digital" Prototype

			· /					
Process	Freq.	V_{dd}	P_{1dB}	IM3	Gain	η	Ref.	Notes
$0.35 \mu m$ RF	1.91 GHz	2.5V	23.5dBm		24.6 dB	35.3%	[19]	with driver, ext. RF
CMOS								chokes
$0.5\mu m$ SiGe BiC-	$1.75~\mathrm{GHz}$	3.3V	24dBm	$37 \mathrm{~dBc}$	$23.9\mathrm{dB}$	29.2%	[20]	with driver, linearized
MOS								
$0.18 \mu m$ standard	$2.4~\mathrm{GHz}$	3.3V	24.5dBm		$19.8~\mathrm{dB}$	31\3%	[9]	with driver
CMOS								
$0.13 \mu m$ RF	$2.4~\mathrm{GHz}$	1.2V	24dBm	29dBc	10 dB	25%	[8]	
CMOS								
$0.09 \mu m$ standard	5.2-5.8 GHz	1V	23.3dBm	$30.5 \mathrm{dBc}$	$13.8~\mathrm{dB}$	26%	this work	simulated results
CMOS								

Table 5.3: Comparison between state of the art linear power amplifiers.

- New transformer layout has simulated efficiency of 75%
- State-of-the-art performance of 5 GHz linear PA
 - 24 dBm with 27% efficiency

4G Wireless Communication

- IEEE 802.16 standard (Wireless MAN)
- Wireless data over long distances in a variety of ways

Two-Stage WiMAX CMOS PA

Output Stage Design

- Thick-oxide CG stage ($V_{DD} = 3.3V$)
- Dynamic gate biasing
- Capacitive divider
- Differential → does not affect small signal gain

Large-Signal CW Measurements

Meeting the WiMAX Mask

• Average Pout = 22.76 dBm

- Average drain efficiency = 15%, Average PAE = 12%
- Power of 2nd, 3rd and higher harmonics also meet FCC mask → possible to eliminate harmonic filter

Back-Off Mode Implementation

- Bottom stage powered-down for low-power mode
- Vctrl=0 in high-power mode and 2*V_{DD} in low-power mode

Low Power Mode

Common-Mode Stability

- Pseudo-differential architecture → common-mode oscillations possible
- Need to consider ground & supply inductances, bypass network

A Simpler Structure

• If $(1/\omega C_{gd}) >> (\omega^* L)$,

$$Z_{IN} = \frac{1}{\left(1 + \omega g_m L_D\right)^2} \left[\frac{1}{j\omega C_{gd}} - \frac{g_m L_D}{C_{gd}}\right]$$

Ref: [Cripps]

Stability Analysis

⁹¹ Copyright © Prof. Niknejad 91

Stabilizing the PA

- Resistor in series with gate
- Resistor in series with bypass capacitor
- Staggered-RC bypass network
- Series RC-pair

 V_{DD}

Series RC Pair

