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Polar Modulators

Limiter

SSB
source

P

,| Envelope

detector

©—> D—S—O

Collector
Modulation

= Polar modulators are gaining popularity by require complex feedback
and/or chip to external PA interaction

= Modulation bandwidth is a limiting factor

= In a digital system, the magnitude/phase signal are generated directly and
fed into an offset PLL and PA supply voltage
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Feedback Loops with PA

+
% RF power amplifi ers
= Need loop gain, stabilitya  —| .| - J . ®®_[>_D_>_,
big concern, modulation A M IT Q
bandwidth - -
= Envelope feedback only T
works for AM-AM non- ! é)
linearity =
= Cartesian requires linear
mixers and good amplitude/ RF power amplif ers

phase matching ssB

source

=  Complexity...

Attenuator

+ |

Op

amp ] Envelope
— Loop fi Iter detector
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Digital Predistortion

. . RF power amplifi ers
Predistortion

SSB _>| > J\
source ? l/
LO

= In a modern system a dynamic predistortion circuit can compensate for process/
temp variations

= Can implement predistortion at baseband
= 100k gates = 1 pad
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Microwave Feedforward

Coupler

—~ / Delay
N\ RF

RF Input _< Wilkinson
Splitter
p i Z<> A

Delay

N/

Error Amplifier

s Basestations use feedforward linearization since
calibariton 1s a possibility.

= Use couplers
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Dynamic PA

Supply — DC-DC converter

Envelope —

Cm

| ( v
I{ © o
Vin Ly, Ry

Dynamic Bias

= Envelope tracking supply and dynamic class-A

= Efficiency always close to peak efficiency of amplifier (say 30%)
regardless of PAR

= Need a very fast DC-DC converter
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Power Combining
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How Big?

= The amount of power that we can extract from a PA device
is limited by the output imepdance of the device. As the
device 1s made larger to handle a higher DC current
(without compromising the /), the lower the output
impedance.

= For a “current source” style of PA, eventually the device 1s
so large that power 1s lost in the device rather than the
load. This is the attraction of a switching PA.
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Gain vs. Output Power Tradeoff

50Q

s o L
L

Matching
Network

Operating Power Gain Circles,F=60GHz

Gp=7.5dB

Gp=6.5dB

Gp=5.5dB
Gp=4.5dB
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Matching

Network
50Q

Constant P1dB Contours

Popt

Popt - 0.50dB
Popt - 1dB
Popt-1.5dB
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Power Devices (cont)

Operating Power Gain Circles,F=60GHz
_ Load Stability circl Finger MSG IdC
100 fingers , \ o width
1um/finger Zoes e 1pm 7.6dB 25mA
/ Gp=4.5dB
2Mm 8.4dB 47mA
4um 6.8dB 94mA

Operating Power Gain Circles,F=60GH: Operating Power Gain Circles,F=60GH:z

100 fingers Load Stability circle 100 fingers
L-=Gp=8.4dB _
2um/finger —ap74d8 4um/finger
——Gp=6.408

Gp=5.4dB

UC Berkeley, EECS 242
Copyright © Prof. Niknejad 11



Power Combining (cont)

),

= But for a non-switching PA we
must perform some power
combining to use more than one
device. This way we can
transform the load into a higher
impedance seen by each PA.

\
%

\
» The power combining networks ¥

are lossy and large. We’ll come Lossy Power Combiner
back to them later.
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Can we “wire” PAs together?

= Note that we cannot simply “wire” PAs together since the
impedance seen by each PA increases by N if we connect
N 1n parallel:
VL
~I./N

Rpa = NRyp,

= This means that each PA delivers less power for a fixed
swing
Vfwz’ng

2Rpa

Ppy =

= There is also “load pulling” effects if the sub-PAs are not
perfectly in phase
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Outphasing LINC Amplifier

Ag cos(wt + 61(1)) '
vi(t) = A(t) cos(wt + ¢(t)) AM vo(t) = B(t) cos(wt + (1))

—>» to <+>—>

PM
Ap cos(wt + @da(t)) '

= Decompose the AM/PM signal into two PM signals

» The two PM signals can get amplified by two non-linear PA’s. These
can be saturated and efficient amplifiers.

= By combining the two signals, the amplitude modulation is restored at
the antenna.

= How to combine signals? Simple current mode will present a time-
varying load to each PA. Coupler or isolator will waste power.
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Outphasing Math

cos(A4) +cos(B) =2 cos( 4 ; 5 ) cos( 4 ; 5 )

cos(wt + @) + cos(wt —¢p) =2 cos(qb )cos(a)t)

cos(a)t +cos”’ A(t))+ cos(a)t —cos™ A(?) )= 2 cos(cos‘1 A(?) )zos(a)t)
cos(a)z‘ +cos”’ A(t))-l— cos(a)t —cos™ A(?) )= 2A(1) cos(a)t)

= In theory all we need to do is to compute the inverse cosine of the AM
waveform to generate our outphasing signals

= In practice, we can use a DSP to calculate these signals since the
envelope rate is at the modulation rate and digital techniques work
well

=  Power combining is the main difficulty.
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Doherty Amplifier Concept

Source: Naratip Wongkomet and P. Gray (UCB)
— — * Invented by W.H. Doherty in 1936

Main +r— . :
C * Good power efficiency over a wide
4[>_ range of output power
Auxiliary

Main on Main on Main on Main on

Aux. off Aux. on Aux. off Aux. on
nmax 'Y] nmaX
2 M —
Q
= SE
8 ]

0 Output power 0 Output power

Must efficiently combine power without increasing V.,
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Doherty Amplifier Block Diagram

Vi, Iy
N4 T-line
Main o | |
Impedance | .7

Inverter

Output

|nput Hipu

|3 RL
~ |Amplitude s =
control 90 AUX

Quarter wave line used as an impedance inverter. Can
be realized with LC equivalent.
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Doherty Details

Vi, Iy —» N4 T line 1

‘ = Small signal region:
Impedance zZ; eq- . .
Inverter % L auxiliary amplifier is off

Main

= When the input crosses
() the threshold, the action

of the auxiliary
Vi, Iy — N4 T line - 7 zZ; ) .
gg | 7 amplifier 1s to

Main

Imlpedznce n R (1+i) .
nverter x dynamically lower the

RL Z, =RL(1+1‘—T

1, load seen by the main
(b) PA

VT = Finally, both amplifiers
ine 1 - 1 s
Impedance % s Cg ' ]Zﬁ Operate at the peak

Vi, I4 —

Inverter

Y17 9R, power point

Main
RL

(c)
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Doherty Amplifier Operation

Impedance Source: Naratip Wongkomet and P. Gray (UCB)
Inverter I
V —_ Vo
- [ L Zm: Zoz/zmo
Im <T Zm ZO B 3RL Zmo 1{L <T> Ia Zm0: RL (1+Ia/ Il)
L

Doherty’s efficiency

Nmax -4 pc--------------- -

_______________

efficiency

O ll)out,max/ 9 IPout,max

Auxiliary amplifier actively changes load

impedance of the main amplifier
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Lumped Doherty Implementation

Vgg1 Vdd

of_hwt_MW TOHP 1993072
I I _ I _| n
C
- . Term
- - c21 Term1
Num=2
" z=Zload

= Can use lumped elements to
realize 90° phase shift —

= The CLC line is an
impedance inverter that also
provides VDD for the aux
amp

= The LCL line is embedded
into the matching network

and provides 90° phase shift o' Cumpod borry -
40 J - «-Class AB p. ".'
= Simulations show an : ) / 7
improved efficiency " -
Zhao, M. Iwamoto, D. Kimball, L. Larson, P. Asbeck ===

0 5 10 15 20 25 30
Pout (dBm)

University of California, San Diego
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LC Matching Networks

: Rs > R
= Matching networks are needed s = 7
to drive output power to the [C A o
load, which has a fixed
impedance. Ci 1~ T C: SR
= Large output powers require a | 1 L
large transformation ratio, and = I
low voltage operation means , ,
high currents in the CMOS stage P —m Viw <m Voo
(sensitive to series resistance). L 2R, 2R,
= 30 dBm of output power 2
requires a matching ratio of p 1 _
<m - =m X 10mW
100 ! : 2 - 509
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LC Matching Network Loss

= The power loss of integrated
matching networks 1s
important.

= The insertion loss can be
derived by making some
simple approximations

= The final result implies that
we should minimize our
circuit Q factor and maximize
the component Q.

UC Berkeley, EECS 242

Py = P+ Pyiss

Pr P 1

Pn  Pp+ Py 1-|-$’L’;S

1 v2 wol 1 02 1
wo X Win= -8 202 _ 2% —“p
44R5RS 28RS 2

2
_PL— UL . 'Ug _ 'Ug

" 2Rg  4-2-Rg 8Rg
wo(Wim +We) =Q x Py
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P diss —



Multistage Matching

Rhi Rzz C Rzz c, R /,
I:c Ln C (_ |r F I
A 10 1
%L, % % i o
ow(Wa + We)  wWa  wWe Q1+ Q —
Q N P(ll + Pd? N 2Pd 2Pd N 2 R-i,opt —\ RL RS
||.' RZ '/' RS | —_—
Q f— % '," —_— l —+— l-" -_— J. ,'| ,’ll R /
) \ Ry, \ R; Qopt = \. \ R_S — 1 ~m'
[V
Ry Rip R R 9
R, Ray  Rap Rin ? | .
Q B ':,' ( ]‘?hz' ) 1/N |
R _ Ry —(1+ QYN ’ \ R,
1ti-stage aesign

Ry R R

]{-j‘) ]{fn ]{lo

| Rlo Hl 2
Since the Q of each stage is lowered, the insertion can improve

. .
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Approximate Insertion Loss

])dz'ss — ;\r(»gl)L
Qu
N | Q (Eq. 7.125) | IL (dB) (Eq. 7.128)
7 — 1 1 0.95 —1.24
1+ \51 2 3 —0.79
3 1.91 —0.76
) 4 1.47 .78
IL = , — 5 1.23 —0.81
14+ \( B )” 1 6 1.07 —0.85

= Suppose a power amplifier delivering 100 W of power has an optimal
load resistance of .5, but needs to drive a 50 IQ2 antenna.

= Design a matching networkassuming that the component Q’s of 30 are
available.

= First note that a matching factor of m = 50/.5 = 100 1s needed.

= Table above shows that 3 stages is optimum
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Technology Scaling

= Power Enhancement Ratio

1 """""""""""""""""""""""""""""""""""
09PN g e """" - 50
S OB N g R R TR —
(&) % 3
c : : :
N R e oo an i vty o s e 1 e
S :
mO.G e e O e L L]
é 2
S05] e NN L
© : Q=15 :
Z. : : .
0)04' """""""""""""""""""""""""""" B e il i S
£ :
e i :
8 e | e e Akt UL LY
© :

: Q=10
(i el o R e B T
0.1 porormmnniniasimmiyypm g 5N =8 """""""""""""""""""
0 : . . :
0 20 40 60 _ 80 100
Power Enhancement Ratio source: Aoki, IEEE MTT-S
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Technology Scaling

source: Aoki, IEEE MTT-S

PR urce: Aoki, IEEE MTT-
= Example Class E N S
e 0.13um > Vppa =3V BINN .
= Poyrso =8 mW 0.7

=
()
.

Required Py;r= 100 mW
Ry=4€Q

PER =50/4=12.5
Qof5> 1 =32%

Qof 10> 1 =65%

Matching Network Efficiency
o
a1

=
)

o
o
L)

=
w
lJ

(=)

...[For the matching network alone !
=2 impedance matching is limited

0 20 40

60 80 100
Power Enhancement Ratio

PER=rn

12.5

- problem for low-voltage operation

UC Berkeley, EECS 242
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Quarter Wave Transformer

R,
YW O O
V. Zo = /TR 2R
T A4 f
P = VP (e** — |p(\ "'_1“.‘3(:.—"—’0“, N L 9an/d
m 2ZO ' P/ /*) / ‘/"». /\',,/'_1 ) ‘ — [/)L ‘(, /
. )
Ve Pr 1 — |p|?
L= (1 — 2) L = = , , ,
Fr 27, (1 ’/)L ‘ ) P, p2a/4 ‘ plA/AL) ‘(;-—20‘)\.,./1

= Quarter wave line 1s a nice way to impedance match source
and load. T-line comes for free since we can use the board

trace at high frequency.
= How does this vary with matching ratio?
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T-Line Loss

]1)/1"

m=—>1 1
Rio — | (J — 200
- 1 09 \\‘ =00
T cosh(2aM/4) + FE sinh(2aM/4) N \‘*\
Y - [ ——
I ~_ Q- 20
/A al 3 \9 — ™ \
EAAAVEE = 5 — )_Q 27 07 "*ﬁ..‘*-‘_
06
N | |
I LI (2 m) = 1 1 +m ]
cosh( )—Ql + y sin 55 ’Q 10 20 30 40 %0

m

= For FR4 and other lossy dielectrics, the IL can be quite

high. Multi-section T-line helps (lower Q) but area is a big
constraint.
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Transformer Matching

M [E
= Simple model of transformer 2
as coupled inductors with
series loss. é % R,
.[L o ng
PL_l_szss L_T2+RL
R
L= L - 2 (ro+Rp)?
r\r
r1+re+ Rp 4+ (32) r + 5k
= Key result: loss is nearly T ~ fir
independent of the matching r1+re+ R Nngg

ratio!
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-

= Simburger and co-authors demonstrated that on-chip
transformer can be used to drive large bipolar PA devices

= QOutput power ~ 5W, 55% PAE
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Simburger Transformer

= Siemens team showed that on-chip transformers were
useful for PA interstage matching.

= Can they be used for the output stage as well? ... Caltech
DAT
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Planar Transformer Layout

= Moderately high £ factor transformers can be realized
using two metal layers

= Different layout styles offer an asymmetric primary/
secondary, a symmetric prim/sec, and a fully balanced and
symmetric prim/sec
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Transformer Turns Ratio

= With a planar layout, turns ratio can be obtained from
omitting turns on the secondary or by connecting
secondary turns in parallel

= Parallel connection offers lower loss on secondary
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High Turns 3D Ratio Transformers

"w A3D layout allows much more
flexibility.

= High turns ratio and higher coupling

factor can be implemented 1n a simple
way
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Balun Layout

= Symmetric structures can be used to build baluns.
= Baluns are a natural fit in fully differential circuits.
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Lumped Modeling of Transformer

Rps1 Copst
2>\ I N\ S

= Symmetric 2n
model

s RL network
models
frequency-
dependent
loss

= Winding
capacitance
for SRF

= Asymmetric
substrate
network

- 36
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Imag(Z21)

Comparison of Results

63

§ 4.2 70 ‘ 7
— Im(221)_sim —Im(z22)_sim
54 |- A Im(Z21)_model —1 3.6 60 | -
. A Im(Z22)_model 6
—Real(Z21)_sim 7 —Re(aI(Z;E) sim
45 | | @ Real(z21) model 3.0 50 |  ® Real(z22)_model : s
) - =
= o N
36 24 N
. N N ‘N
= S e
27 : 18 8 © 3 B
° o § o
18 ~ e 1.2 2
[ )
9 - 06 1
o
0 ‘é‘ 0.0 ‘ 0
0 20 40 60 80 0 20 40 60 80

Frequency [GHZz] Frequency [GHZ]

= Necessary to match both y, z parameters instead of s-
parameters only

= Good match up to high frequencies

37
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Transformer Resonant Modes

R, C./2 Ry
WA | W
. ;7 N\ . / -0 \\\'° '1/ \‘ +
~o =—= So
o L L C.
1 1 CC/'Z 2 2
w' = 1 W™ = 1
N Co(Ly+ Ly +2M) V(¢ +20)(L,+L,—2M)
Zy1092xf)
with coupling capacinor
£ without couping capacior

UC Berkeley, EECS 242 °

f (GHz)

s Two modes due to odd and
even excitation.

= In “even” mode the
coupling capacitor Cc is not

excited.

without couping Capachor

with coupling capacitor




Transformers Comparison

= Paper published at RFIC 2004

s “Microwave Performance of Monolithic Silicon Passive
Transformers”, Mounir. Y. Bohsali and Ali. M.

Niknejad
= Compare various transformer layouts

s Define metric that takes into account bandwidth
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Shunt versus Planar

—_
=

_________________________________________________________________________

—
J

______________________________________________________________________

—
=

)

o

'''''''''''''''''''''''''''''''''''''''''''''''''''''

=N

-----------------------------------------------------------------------

[

___________________________________________________________________

Minimum Insertion Loss (dB)

. . — nplanar L
i i | |---- shuntL

o

1] g 10 15 20 28 3a 35 40

Frequency (GHz)

]
=

B)

Minimum Insertion Loss (d

—_
o

— —
] E=%

—
=
T

mn]

o

=N

[

=

_________________________________________________________________________

------------------------------------------------------------------------

v [ — planar M
-- shunt M
series M

a 5 10 15 20 25 30 35 40

Frequency (GHz)

m Planar versus shunt have similar behavior below
“resonance’ with 2-3 dB of loss.

= Series structure has much lower resonance frequency.

UC Berkeley, EECS 242
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Transformer Bandwidth

1dB Bandwidth v/s Frequency 1dB Bandwidth v/s Frequency
5"'"'"'".'"'"'"'i''"'"'".'"'"'"''.''"'"'"i""""".‘ """"" 13 5
E E ; : L
¥ 12 e e SR
] U A S SR SN R S U L] SR S U S S FA—
T T | i i
) (Dm [ et S et S
.t OO MO AN SO S S Pt OO SO SN
-t e ' | '
2 g, + B
= < G LA
-83_5 _______________________________________________________________________ E ?_.-..-.-..-.L-:.-..-....;. ____________________ g _‘? ........................
8 | & o]
m —+— planar L m Bip----- + """"""
-~ shunt L -+ planar M
E 3 : , : : E 5 """" S #- shunt M
e | s | S A N S N sefies M
S I s " IS RN N Lot
1 2 3 4 5 B 7 g 0 5 10 15 20 25 30
Frequency (GHz) Frequency (GHz)

= Define a new metric: bandwidth over which gain 1s within 1 dB of
“optimal” gain (for a bi-conj. match)
= Planar structure has very good bandwidth (50-150%), and other

structures are worse, but series structure 1s significantly worse.
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Transmission Line Balun

= Turn parasitic coupling capacitance into a distributed
broadband transmission line!

s Excite the differential mode rather than the odd mode.
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Broadband Inverter

Vi = (coshy£ + sinh v¢) V, = "V},
vy = —V'Q = —€ A'EV]

= The voltage at the load 1s inverted if the length of the line
1s small (~1/10 wavelength)

= Note that line excited with both odd and even mode at
source but higher Z0 and loss of line rejects even mode.
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LC Coupler

= Lumped 180° coupler
= Low bandwidth (20%)
= Element values

1
— =wlL =V2Z
e, W V227,

|
<

e
Il
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LC Balun

8N VeeP  VeeO veeO
A
'0:PB8Grd2 }——p—
13:VCC3 —@ - g L11 ‘ .
e T Lo . = Essentially a bridge
17:Vop1 g |  — .
S D i O with phase lead and lag
16:Von C24 2
153052 |— 23 networks.
14Non? F—dp——t }7 .
3PAGRES | = Bandwidth? Depends
— L9 : :
e on Q of match since this
1:P8Grd! * e . . .
—— vecPE 1s just a high-pass and
VeeO .
A low-pass matching
e network.
R p——_ | ‘
IBalar*aed R.
nput ' — A / .
g — gw?ajar'ced ZC - R'LRL
oo IYYY\ o S
1 Le 1
L = —_— —_ —
W w2,
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Measured Lumped Balun

"
s 20% fractional bandwidth g : \/

= IL low due to substrate i =

= Phase/amplitude balance — —
relatively poor. _ Rewmlos 1 dB
[nsertion Loss 0.7¢éB
Amplitude Imbalance 0.5¢B
Phase Imbalance 3.6°

An Integrated Double Balanced Mixer on Multilayer
Liquid Crystalline Polymer (M-LCP) Based Substrate

Wansuk Yun', Vinu Govind', Sidharth Dalmia’, Venky ‘Sundarmnx. Madhavan Swaminathan',
and George E. White”

‘Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA 30332, U.S.A, 404-385-6417
“ Jacket Micro Devices, Suite 213, 75 57 Sureer, Altanta, GA 30308, USA, 404-526-6046
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Transmission Line Balun

= This works as a balun over a very broad band. If length is
quarter wavelength, the even mode is rejected at center
frequency.

vy, 2 _ 2 — 9 ke

G!_' — — N . g
v, coskl+jsinkfF- el
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Marchand Balun

Jn-balanced Input

A A =
v/ !

Balances Output

= Improved bandwidth
= Less sensitivity to even-mode impedance

= Requires two quarter wave structures.
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Wilkinson Power Combiner

N4 T-line Input 1
Z |

Output L
PR R Output %

Z,

Input 1

Input 2

Input 2 C—
N4 T-line —

= Theoretically we cannot build a lossless 3 port device with
isolation and power combining.

= The Wilkinson uses a resistor that 1s normally “open
circuited” (even mode) and does not generate loss.

= Effective for high frequency designs or using LC circuit at
low frequency.
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Cal Tech DAT

@x % \@
/>\ /<X
+ o
VL)I.)'— Vour —| Vbp
— o]
N4 1 NV
h \45%5)
~Vout 0~ 000 - 00~ 000 - 0ot

= Use virtual grounds wisely to turn 1:1 coupled lines into a
transformer loop.
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Transformer FOM

= Unlike inductor Q factor, there
1S no obvious “silver bullet” Gmaz = zﬂ(k V-1 =k- k-1
FOM for transformers. .

. _ [ Rp+jwly  jwM
= For power combmmg. 7= ( oM Redt jwLs
applications, the maximum
power gain (bi-conjugate k= 2%(’222)%72“) _‘m(zzlzm)
291212
match) has been used as a o
figure of merit L 2Ri+w?M? 2R3 4 WKL
w2 M2 w2K2[2

= For a simple 1:1 transformer,
the maximum gain 1s a function  G,,..(Q,K) =1+ ——
of only the O and K factors

1
QQKQ Q4K4 Q2K2
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Transformers for Power Combining

Transformer Insertion Loss

1

0.9

O
|
N
)

|

0.6

0.6 0.7 0.8 0.9 1

= Notice that relatively low insertion loss is possible with moderate on-chip Q and
K factors, thus allowing fully-integrated transformers

»  Connecting 1:1 transformers in series and shunt, we can perform efficient power
combining independent of the number of sections [Caltech DAT architecture]
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Transformer Power Combining Layout

+ ‘/out -

= Very simple layout

= Don’t get DAT benefit = have extra “leads” that waste
power

= But can turn off individual stages for power back-off

= Can easily scale power by adding more stages: design core
driver stage
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Fully Integrated Dual Mode CMOS PA

-V
ES

AR
\/

Peak Output Power Mode

UC Berkeley, EECS 242

= S— ) A
+_> 3||<
. :

. !

Power Back-off Mode
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Power Combining and Control

o e
= Use transformer to ~ - ||4 N~ > §II% d

f fficient : |
perform efficien , \/\

power combining < It _EH;

s Can also use structure

A A
: o S
for efﬁment.power ~ It: 1>
back-off to improve B L
average power —— <im. propes ed PA (3 bRt contro)
ff . 40 ---. sim, conventional PA 2 5dB back-off |
efficiency = —
= At moderate back-off | yaV v
, I 12dB back:off g
(6 dB), efficiency 2 7 Py
& 20 a
close to peak level =
o e
Q10 -
f -
g
)

UC Berkeley, EECS 242 0 10p  (gam 20 30



Power Control and Efficiency Enhancement

VRFIRF

_ R OUTPUT

Np=—H— =

1
PSUPPLY 2 VSUPPLY .IDC

Proposed PA

N

I At power back-off

Effi ciency

1 Reduce DC current

k4
L4
L4
k4
L4
L4
4
L4
’ \

Conventional PA | Modulate load

-
-
-
-
-
-
-
="
-
-
-
-

Output Power
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Load Modulation

N
(RL + Z m? 'RPA,i> - Via,j
Z

1=1

N
mj § :mi Vpa,i
i=1

P,=N?-m?. £
’ 2Rr

= In general there 1s no 1solation in the transformer so the
load current of one primary will “pull” the impedance of
another primary.

= [t’s only under the special circumstance that all windings
are driven 1n phase that we obtain 1solation.
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Efficiency at Back-Off

80

R 4 ng = T Vo 70t
Vp:gmllL-Vi:ngRL'Vi 4 Vpp sol
\ '0\750-
Vout = 4Vp =gmRr Vi :c?4o
mR £ ol
Vp:g2L'V;5/2=ngL'Vv;/4 »
\\ 20+

mBLV;
Vout = 2Vp - g 2L 0

0 1 1 1 1 1
-30 -25 -20 -15 -10 -5 0
relative output power [dB]

= When all four stages are on, each PA see’s %4 of the load.

= Suppose 2 stages are turned off. Then the PA’s see ’42 the load. The

voltage swing at the output drops, but the voltage on each primary
remains the same!

= For Class B operation, we can theoretically achieve the same
efficiency at back-off.
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Power Back-Off Mode

1
R=-R
3 L
A = m-lR
unit g 3 L
1 3
Vo = Aunit ) I/1 = gm_RL .Zl/i,max = Vo,max
noverall = nunit = 7/’max
onerall = N.Aunit = g’/nRL
1V Vv’
Pout=N.Punit=3._ - =2 — = 9 peak
21, 2R, 16
g L

UC Berkeley, EECS 242

Say we back-off the
input by 3/4 .

If we turn off one
amplifier, the load seen
by each amplifier 1s
now 1/3

But the output voltage
1s still at the peak
optimal value

The overall efficiency
1s therefore at the peak
value.
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A 1.2V, 2.4GHz Fully
Integrated Linear CMOS PA
with Efficiency Enhancement

CICC 2006
Gang Liu'2, Tsu-Jae King Liu?
Ali M. Niknejad'-2

Berkeley Wireless Research Center?
Electrical Engineering and Computer Sciences?
University of California, Berkeley, CA, USA
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Simplified 4-Way Combiner Schematic

500 L

Transformer

HE

Unit Amﬁ‘ier

» Combing power from 4 unit amplifiers

» Centering at 2.4-GHz
ue s SURbEmatching tuned by switched cap at bagkroft .o wiknejao 61



Schematic of Each Unit Amplifier

Vo
Bond-wire
Y'Y\
/M

Y'Y Y\
A #
5-Q
2.4-mm/0.16-um AP —wWH[] 6
60-pF == T—W\v——=
o
— AM—{[ 2.4-mm/0.16}um J—w——
7-Q

j Bond-wire
— Gnd
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Cascode Layout

m1
: ]
{
| m2
I
Vcas
°—||__, m?2
(b)
m1
Vbias I-EL““ ]
m2

(c)
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Die Microphotograph
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Transformer & Cap Array

Vout I

Ee=Y | Kl | Kan] | Kam)
tH tH tH t

Vout sl

220-um

40-p 0-p

* 65-um

t t tH t
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Single-Tone Test

35 35
30 130
2| g
-
£ m
= o
3 15] 11500
. -
-
10 100
5t 15

Freq = 2.4-GHz, Peak Power Mode
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Two-Tones Test

g I —

IM3=-29dBc @ 18dBm

) ﬂp_nm5

10

Freq = 2.4-GHz, 1-kHz tone spacing, Peak Power Mode

UC Berkeley, EECS 242
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Measured Efficiency at Back-Off

+ mesas, proposed PA (1-bit control)
2| + meas, conventionsl PA
—— s5im, propos ed PA (1-bit control) 3
£ - - -. sim, conventional PA / é‘
z ¥ AT
5 RS
2 P
w A i
k= /Qfé
- /"Z%#
O +
w _./f_‘._ e d
T ¥
wﬁﬁ
0 M 4 1
0 10 2
Pm'm

Note: at 2.5-dB back-off, one unit amplifier was turned off.
UC Berkeley, EECS 242
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Measurements with EDGE Signals

Ref 20 dBm Atten 30 dB

Samp
Log
16
dB/

Center 2.4 GHz
#Res BN 36 kHz #EH 300 kHz

Span 2 MHz
Sweep 9.167 ms (401 pts)

UC Berkeley, EECS 242

Channel Power

20.53 dBm /2.0000 MHz

Power Spectral Density

-42.48 dBm/Hz

Freq = 2.4-GHz, Peak Power Mode
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Measurements with 802.11¢g Signals

L [ o I T e
] R N W S S— KA &SN
I | o A A i
G I OSSRV N AN | IS S8 . 1--w&%—f-#--’%’-’*--&q----
RIS B - Bt
§ )t S B G A
s M Sy e g R
B M s e 7 e B

W w0 0 0 = w® %7 s 3 4 1 3 5 7 3

Frequency [MHz]

P_.=14.5-dBm EVM = 4.48%

Freq = 2.4-GHz, Peak Power Mode
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EVM vs Output Power

10

EVM (%)
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Table of Performance

Technology 0.13-um RF CMOS
Supply voltage 1.2-V
DC Current 114-mA
P_iaB 24-dBm
Drain efficiency 25%
Saturated Power 27-dBm
Drain efficiepcc  celey, £l 24 32%
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A 5.8 GHz Linear Power Amplifier
in a Standard 90nm CMOS Process
using a 1V Power Supply

RFIC 2007
Peter Haldi, Debopriyo Chowdhury, Gang Liu and
Ali M. Niknejad

Berkeley Wireless Research Center, Dept. of EECS,
UC Berkeley, Berkeley, CA 94704, USA
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New Transformer Network

v vdd v vdd

= Figure “8” style layout minimized the impact of lead
inductance

= Lateral coupling used since top metal layer 1s most
conductive and most distant from substrate

= Very good isolation characteristic due to flux inversion

UC Berkeley, EECS 242 Copyright © Prof. Niknejad 74



Improved Layout...

<
o
Q
<
Q.

d V

Q.
Q.
<

Q
Q.

| | =

| =
| | =
[ 1=

;, \2 ‘/ \i ‘, \3 ‘/ \i Rload
1 7/ \, (\</ \>,) 7/ N\, {\</ \>/) =
® AN AN o s

1 L

10

B e e e

= Using two primary windings
= Improved coupling
= Lower loss (current crowding at edge of conductors)
= More symmetric primary/secondary for optimal power
transfer
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Measured Output Power

26

—e— Mmeasured -

24 o 24 dBm

— — simulation -’

22

20

18

Output Power [dBm]

16

14

12

4 6 8 10 12 14 16 18 20
Input Power [dBm]

= Peak power is 24 dBm. Good match to simulation up to

1dB compression point.
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Measured Efficiency

33 /
—e— measured S

— — simulation /7
< - 27%
23

18

13

Efficiency [%]

12 14 16 18 20 22 24 26
Output Power [dBm]
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PA Linearity

a Mkrl -186.5 MHz

Ref 38 dBm Atten 40 dB -19.84 dB
EUD;’" Marker a
10 -100.500000 MHz "
d/ 1-19.84 dB ‘.1?

i

it I
LaAv
Wl §2
$3 FCl |y
£t
FTun
Swp IR I ,Ir““” . ‘ ML fel 1o
Start 5.300 B GHz Stop 6.208 B GHz
Res BH 3 MHz VEHW 3 MHz Sweep 1.52 ms (601 pts)

= IM3 =28 dBc at output power of 20.5 dBm (200 MHz)

= [M3 has tone spacing dependence due to lack of good bypass
class AB stage). Verified with packaged version.

UC Berkeley,

ECS 242
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Output Power vs Frequency

24.6

244

242

0.9dB
24.0

Output Power [dBm]

23.8

23.6

5 5.1 52 5.3 54 55 5.6 5.7 5.8
Frequency [GHZz]
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CMOS “digital” Prototype

Process Freq. Vi P IM3 Gain n Ref. Notes

0.35pm RF | 1.91 GHz | 2.5V | 23.5dBm 24.6 dB | 35.3% [19] with driver, ext. RF
CMOS chokes

0.5pm SiGe BiC- | 1.75 GHz | 3.3V | 24dBm | 37 dBc | 23.9dB | 29.2% [20] with driver, linearized
MOS

0.18um standard | 2.4 GHz | 3.3V | 24.5dBm 19.8 dB | 31:3% [9] with driver

CMOS

0.13pm RF | 2.4 GHz 1.2V | 24dBm | 29dBc | 10dB | 25% 8]

CMOS

0.09pm standard | 5.2-5.8 GHz | 1V | 23.3dBm | 30.5dBc | 13.8 dB | 26% | this work | simulated results

CMOS

Table 5.3: Comparison between state of the art linear power amplifiers.

= New transformer layout has simulated efficiency
of 75%

s State-of-the-art performance of 5 GHz linear PA
= 24 dBm with 27% efficiency

UC Berkeley, EECS 242
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4G Wireless Communication

. 802.16-2004 9\

Portable Broadband Access

802.16e ...
Portable, Mobile 1

=
e

[ 2 : O
- ﬁ\_‘f—n jresy s

Consume; B;oad band Access Hotspot Backhaul

= IEEE 802.16 standard (Wireless MAN)
= Wireless data over long distances in a variety of ways

82
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Two-Stage WIiMAX CMOS PA

Vv

BIAS1
Y | POWER
5’*32 O 1 COMBINER
1
1: T E o o E F:

|2 — —
| L LM, Mg |}
PIN JJT_O_ _o_ -i I M5 M6 I— : : ‘\\\ ,,' E :
L? % : INTER-STAGE 7\
P G 7 SPLITTER OUTPUT STAGE 2
g VDD (IDENTICAL TO STAGE 1
INPUT SHOWN ABOVE)

83
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Output Stage Design

VBIAS1
R82%
1
RB1§ 1C81
C C —VOUT
1 I
Tt
|\/|1 M2 -
; oV,

Thick-oxide CG
stage (Vpp = 3.3V)

Dynamic gate
biasing

Capacitive divider

Differential = does
not affect small
signal gain

84
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Large-Signal CW Measurements
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36.6 40
Py = 27.7dBm 30 ¢
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Pout Drain N O
. 20 <
efficiency | f)
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PAE 10 LU
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Input Power [dBm]

85
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Meeting the WIMAX Mask

zo ©Offget Z1.5| dB

WINPT}

——70

Center 2.3 GHz 5 MHz/ Span 50 MHz

= Average Pout=22.76 dBm
= Average drain efficiency = 15%, Average PAE = 12%

= Power of 2nd, 3rd and higher harmonics also meet FCC
mask = possible to eliminate harmonic filter

86
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Back-Off Mode Implementation
N NS

el |

N

N > VCT;{I: %

= Bottom stage powered-down for low-power mode

= Vctrl=0 in high-power mode and 2*V 5 in low-power mode

87
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PAE [%]

Low Power Mode

12

10

Low-Power
Mode
High-Power
Mode
10 12 14 16 18 20 22 24

Average Output Power [dBm]

88
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Common-Mode Stability

e

LP
Bé

O
)|
J1

M

N

VDD
LDD
RL
Vi+—N4\—|l:M1
% LGND

 Pseudo-differential architecture > common-mode oscillations

possible

* Need to consider ground & supply inductances, bypass network

89
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A Simpler Structure

Caa [ J(oL - )
00 |_) 1 I Z]N = T ad
= L |_) |_,.M1 1+ ]C()gmLD
© ZIN
If (1/wCy5)>>(w*L),

1 1 gmLD
IN = ) [ . - ]
(1 + wgmLD) ]C()ng ng

VA
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Stability Analysis
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« For oscillation, [A] is singular
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Stabilizing the PA

Resistor in series with gate
Resistor in series with bypass capacitor
Staggered-RC bypass network

Series RC-pair

C/2

R/2

C/4

R/4

C/8

R/8

C/16 |C/32

R/16 |R/32

DD

DD

10000

1000

100

Magnitude of Z;, [ohm]
=

\

0.01

0.1

1 10 100
Frequency [GHZ]

1000

100

10

Network Q

0.1

1000

92
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Series RC Pair

Ipias ¢T
£T0E

-
AW~
e
AW~

gL

»

—No RC network : ;
_With RC network. _ ..........

D

= Transistors have higher gain
at lower frequency,
transformers are wideband

s RC network = loss around

35GHz without impacting
60GHz

Stability factor [Mu]
o N

1
N

0O 10 20 30 40 50 60 70
Frequency [GHZ]
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