EECS 242: **RF Mixers**

Professor Ali M Niknejad Advanced Communication Integrated Circuits

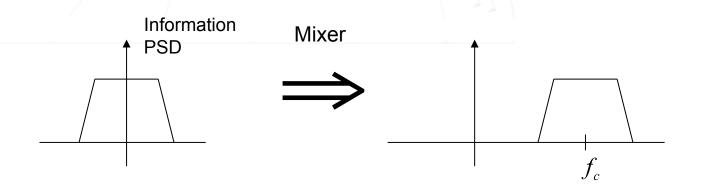
University of California, Berkeley

Copyright © Prof. Ali M Niknejad

UC Berkeley EECS 242

Mixers

The Mixer is a critical component in communication circuits. It translates information content to a new frequency.

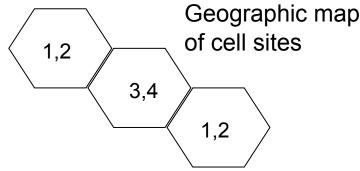


Why use a mixer (transmit side)?

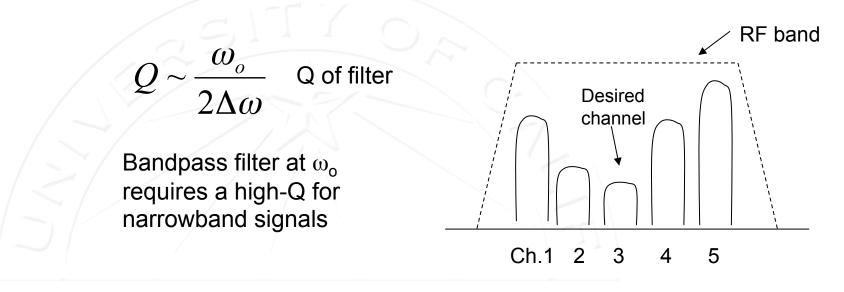
1) Translate information to a frequency appropriate for transmission

Example: Antennas smaller and more efficient at high frequencies

- Spectrum sharing: Move information into separate channels in order to share spectrum and allow simultaneous use
- 3) Interference resiliance



Why use mixer in the receiver?



 $\Delta f \sim 200 \text{ kHz} (\text{GSM})$

$$f_o \sim 1GHz$$

$$Q = \frac{10^9}{2 \times 200 \times 10^6} = \frac{1000}{0.4} = 2500$$
 High Q

UC Berkeley EECS 242

Mixers in Receivers (cont)

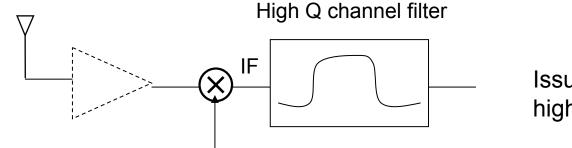
High $Q \Rightarrow$ Insertion Loss

Filter center frequency must change to select a given channel \Rightarrow tunable filter difficult to implement

Mixing has big advantage! Translate information down to a fixed (intermediate frequency) or IF.

1 GHz \Rightarrow 10 MHz: 100x decrease in Q required

Don't need a tunable filter



Issue: Mixer has high noise factor

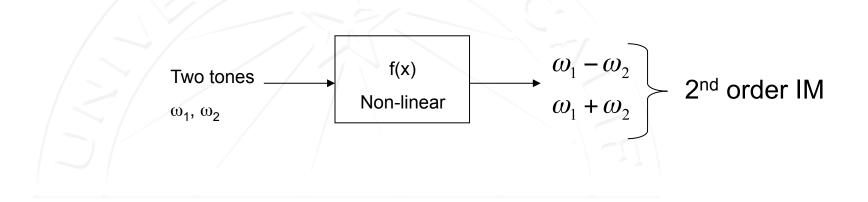
Superheterodyne receiver architecture

Mixers Specifications

- <u>Conversion Gain</u>: Ratio of voltage (power) at output frequency to input voltage (power) at input frequency
 - Downconversion: RF power / IF power
 - Up-conversion: IF power / RF power
- Noise Figure
 - DSB versus SSB
- Linearity
- Image Rejection
- LO Feedthrough
 - Input
 - Output
- RF Feedthrough

Mixer Implementation

We know that any non-linear circuit acts like a mixer



Squarer Example

$$x \longrightarrow x^{2} \longrightarrow y$$

$$A \cos \omega_{1}t + B \cos \omega_{2}t$$

$$y = A^{2} \cos^{2} \omega_{1}t + B^{2} \cos^{2} \omega_{2}t + 2AB \cos \omega_{1}t \cos \omega_{2}t$$
DC & second harmonic Desired mixing
Product component:
$$\frac{2AB}{2} \{\cos(\omega_{1} + \omega_{2})t + \cos(\omega_{1} - \omega_{2})\}$$
What we would prefer:
$$LO \longrightarrow FF \qquad v_{IF} = v_{LO} \cdot v_{RF} \cos(\omega_{1} \pm \omega_{2})t$$

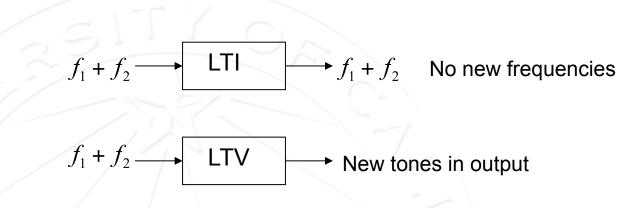
$$v_{RF} = v_{RF} \cos \omega_{1}t$$

A true quadrant multiplier with good dynamic range is difficult to fabricate

UC Berkeley EECS 242

RÉ

LTV Mixer



Example: Suppose the resistance of an element is modulated harmonically

$$v_{LO} \bigtriangledown IF = I_{O} \cos(\omega_{RF} t) \cdot R_{O} \cos(\omega_{LO} t)$$

$$= \frac{I_{O}R_{O}}{2} \{\cos(\omega_{RF} + \omega_{LO}) + \cos(\omega_{RF} - \omega_{LO}) \}$$

UC Berkeley EECS 242

Time Varying Systems

In general, any periodically time varying system can achieve frequency translation

 $v(t) = p(t)v_{i}(t) \qquad p(t+T) = p(t)$ $= \sum_{n=-\infty}^{\infty} c_{n}e^{j\omega_{0}nt}v_{i}(t)$ $c_{n} = \frac{1}{T}\int_{0}^{T} p(t)e^{-j\omega_{0}nt}dt \qquad v_{i}(t) = A(t)\cos\omega_{1}t = A(t)\left(\frac{e^{j\omega_{1}t} + e^{-j\omega_{1}t}}{2}\right)$ $v_o(t) = A(t) \sum_{-\infty}^{\infty} c_n \frac{e^{j(\omega_o nt + \omega_1 t)} + e^{+j(\omega_o nt - \omega_1 t)}}{2}$ consider n=1 plus n=-1

Desired Mixing Product

$$C_{1} = C_{-1}$$

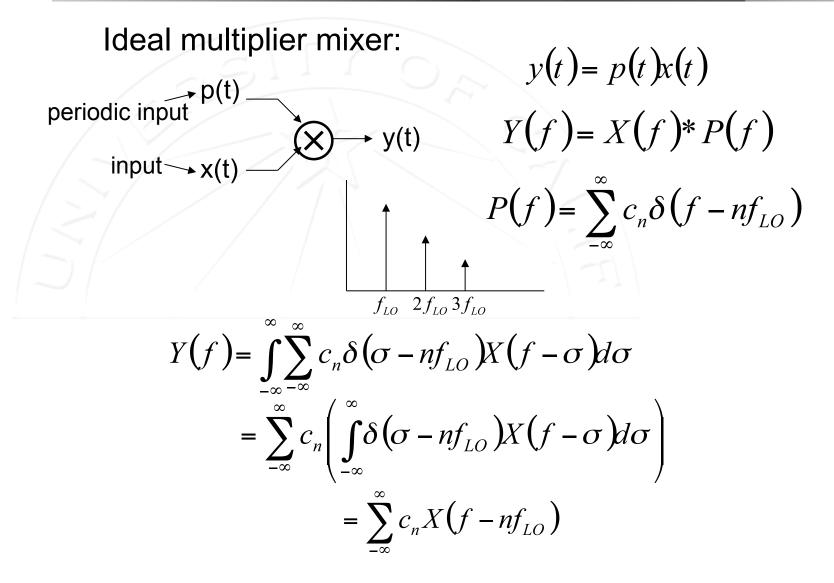
$$v_{o}(t) = \frac{C_{1}}{2}e^{j(\omega_{o}t - \omega_{1}t)} + \frac{C_{-1}}{2}e^{-j(\omega_{o}t + \omega_{1}t)}$$

$$=c_1\cos(\omega_o t-\omega_1 t)$$

Output contains desired signal (plus a lot of other signals) → filter out undesired components

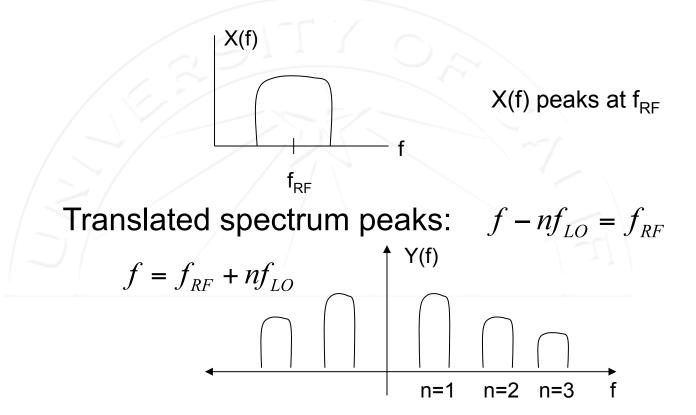
UC Berkeley EECS 242

Convolution in Frequency



UC Berkeley EECS 242

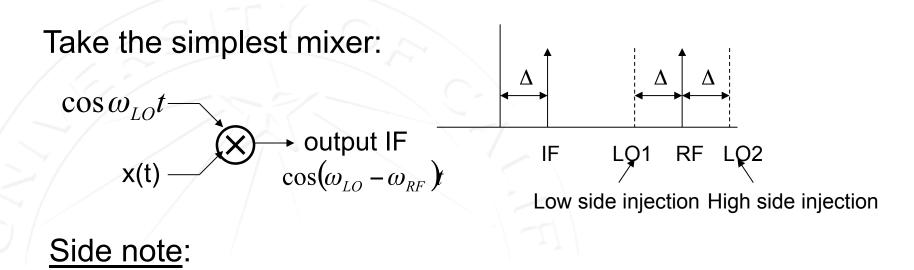
Convolution in Frequency (cont)



Input spectrum is translated into multiple "sidebands" or "image" frequencies

⇒ Also, the output at a particular frequency originates from multiple input frequency bands UC Berkeley EECS 242
Copyright © Prof. Ali M Niknejad

How Low can you LO?



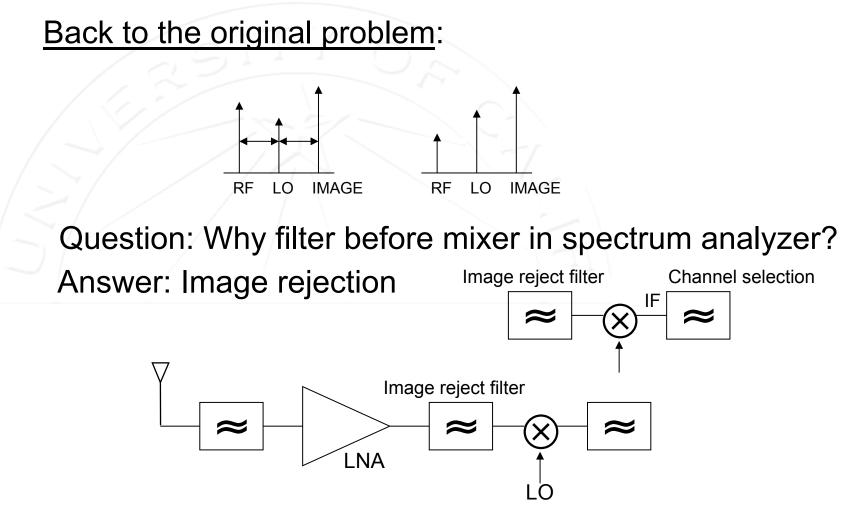
Which LO frequency to pick? LO1 or LO2?

$$f_{LO} = f_{LO} + \frac{n\Delta f}{N}$$
 Channel spacing

Tuning range: $\frac{\Delta f}{f_{LO}} \Rightarrow f_{LO}$ larger implies smaller tuning range

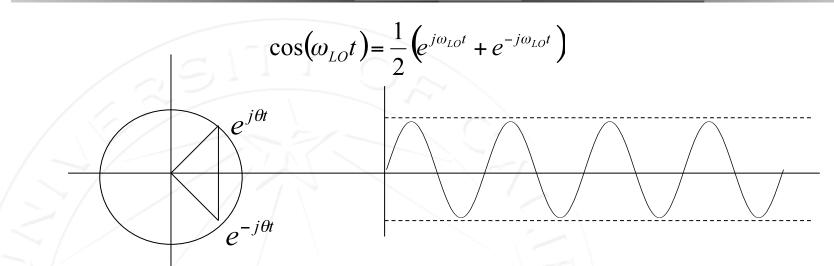
UC Berkeley EECS 242

Image Problem



Receiver architecture is getting complicated...

Origin of Image Problem



If we could multiply by a complex exponential, then image problem goes away...

$$e^{j\theta_{LO}}\cos(\omega_{RF}t) = e^{j(\theta_{LO} + \theta_{RF})t} + e^{+j(\theta_{LO} - \theta_{RF})}$$

$$e^{j\theta_{RF}} + e^{-j\theta_{RF}} \qquad e^{j\theta_{IF}}$$
IF frequency
$$\theta_{RF} = \theta_{LO} - \theta_{IF}$$
High side injection
$$\theta_{IM} = \theta_{LO} + \theta_{IF}$$
(Low side injection) Image Freq.

UC Berkeley EECS 242

Review of Linear Systems and PSD

Average response of LTI system:

$$y_{1}(t) = H_{1}[x(t)] = \int_{-\infty}^{\infty} h_{1}(t)x(t-\tau)d\tau$$
$$\overline{y_{1}(t)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} y_{1}(t)dt$$
$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left(\int_{-\infty}^{\infty} h_{1}(\tau)x(t-\tau)d\tau \right) dt$$
$$= \int_{-\infty}^{\infty} \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t-\tau)dt \right) h_{1}(\tau)dt$$
$$\overline{x(t)}$$

UC Berkeley EECS 242

Average Value Property

$$\overline{y_1(t)} = \overline{x(t)} \int_{-\infty}^{\infty} h_1(t) dt$$
$$H_1(j\omega) = \int_{-\infty}^{\infty} h_1(t) e^{-j\omega t} dt$$

$$\overline{y_1(t)} = \overline{x(t)}H_1(0)$$

"DC gain"

UC Berkeley EECS 242

Output RMS Statistics

$$\overline{y_1^2(t)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^T \left(\int_{-\infty}^\infty h_1(\tau_1) x(t - \tau_1) d\tau_1 \right) \left(\int_{-\infty}^\infty h_1(\tau_2) x(t - \tau_2) d\tau_2 \right) dt$$
$$= \int_{-\infty}^\infty \int_{-\infty}^\infty h_1(\tau_1) h_1(\tau_2) \left(\lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T x(t - \tau_1) x(t - \tau_2) dt \right) d\tau_1 d\tau_2$$

Recall the definition for the autocorrelation function

$$\phi_{xx}(t) = \overline{x(t)}x(t+\tau)$$
$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)x(t+\tau)dt$$

UC Berkeley EECS 242

Autocorrelation Function

$$\overline{y_1^2(t)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_1(\tau_1) h_2(\tau_2) \phi_{xx}(\tau_1 - \tau_2) d\tau_1 d\tau_2$$
$$\phi_{xx}(j\omega) = \int_{-\infty}^{\infty} \phi_{xx}(\tau) e^{-j\omega\tau} d\tau$$
$$\phi_{xx}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{xx}(j\omega) e^{j\omega\tau} d\omega$$

 $\phi_{xx}(j\omega)$ is a real and even function of ω since $\phi_{xx}(\tau)$ is a real and even function of τ

UC Berkeley EECS 242

Autocorrelation Function (2)

$$\overline{y_1^2(t)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_1(\tau_1) h_1(\tau_2) \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{xx}(j\omega) e^{j\omega(\tau_1 - \tau_2)} d\omega d\tau_1 d\tau_2$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{xx}(j\omega) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_1(\tau_1) h_1(\tau_2) e^{j\omega(\tau_1 - \tau_2)} d\tau_1 d\tau_2$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{xx}(j\omega) \left(\int_{-\infty}^{\infty} h_1(\tau_1) e^{+j\omega\tau_1} d\tau_1 \right) \left(\int_{-\infty}^{\infty} h_1(\tau_2) e^{-j\omega\tau_2} d\tau_2 \right) d\omega$$

$$H_1^*(j\omega) = \left(\int_{-\infty}^{\infty} h_1(\tau) e^{-j\omega\tau} d\tau \right)^* = -$$

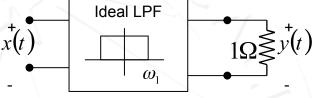
$$\overline{y_1^2(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{xx}(j\omega) H_1(j\omega) H_1^*(j\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{xx}(j\omega) H_1(j\omega)^2 d\omega$$

UC Berkeley EECS 242

Average Power in X(t)

Consider x(t) as a voltage waveform with total average power $x^2(t)$. Let's measure the power in x(t) in the band $0 < \omega < \omega_1$.



The average power in the frequency range $0 < \omega < \omega_1$ is now

$$\overline{y_1}^2(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{xx} (j\omega) H_1(j\omega)^2 d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\omega_1} \phi_{xx} (j\omega) d\omega$$
W/radian
$$= \int_{f_1}^{f_1} \phi_{xx} (j2\pi f) df$$
W/Hz

UC Berkeley EECS 242

Average Power in X(t) (2)

$$=2\int_{0}^{f_{1}}\phi_{xx}(j2\pi f)df$$

Generalize: To measure the power in any frequency range apply an ideal bandpass filter with passband $\omega_1 < \omega < \omega_2$

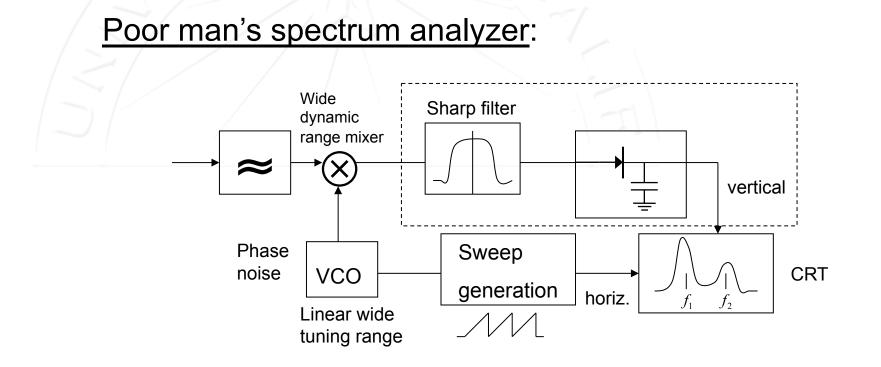
$$\overline{y_1^2(t)} = 2 \int_{f_1}^{f_2} \phi_{xx} (j 2\pi f) df$$

The interpretation of ϕ_{xx} as the "power spectral density" (PSD) is clear

UC Berkeley EECS 242

Spectrum Analyzer

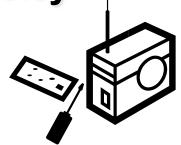
A spectrum analyzer measures the PSD of a signal



EECS 242: Current Commutating Active Mixers

Professor Ali M Niknejad Advanced Communication Integrated Circuits

University of California, Berkeley



Copyright © Prof. Ali M Niknejad

UC Berkeley EECS 242

Balanced Mixer

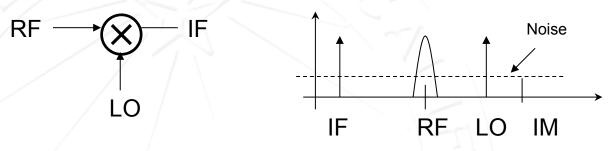
- An unbalanced mixer has a transfer function: $y(t) = x(t) \times s(t) = (1 + A(t)\cos(\omega_{RF}t)) \times \begin{cases} 0\\1 \end{cases}$ • which contains both RF, LO, and IF • For a single balanced mixer, the LO signal is "balanced" (bipolar) so we have $V(t) = x(t) \times s(t) = (1 + A(t)\cos(\omega_{RF}t)) \times \begin{cases} +1\\-1 \end{cases}$ No "DC"
 - As a result, the output contacts LO but no RF component
 - For a double balanced mixer, the LO and RF are balanced so there is no LO or RF leakage

$$y(t) = x(t) \times s(t) = A(t) \cos(\omega_{RF} t) \times \begin{cases} +1 \\ -1 \end{cases}$$

UC Berkeley EECS 242

Noise in an Ideal Mixers

Consider the simplest ideal multiplying mixer:



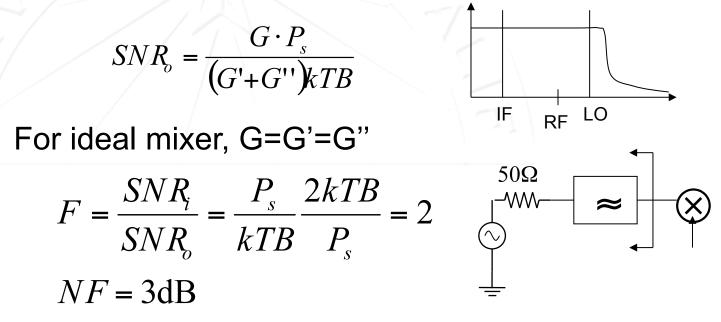
- What's the noise figure for the conversion process?
- Input noise power due to source is kTB where B is the bandwidth of the input signal
- Input signal has power P_s at either the lower or upper sideband

$$SNR_i = \frac{P_s}{kTB}$$

UC Berkeley EECS 242

Noise in Ideal Mixers

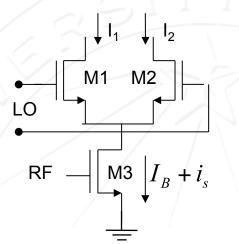
At the IF frequency, we have the down-converted signal G·P_s and down-converted noise from two sidebands, LO - IF and LO + IF



For a real mixer, noise from multiple sidebands can fold into IF frequency & degrade NF

Noise in CMOS Current Commutating Mixer

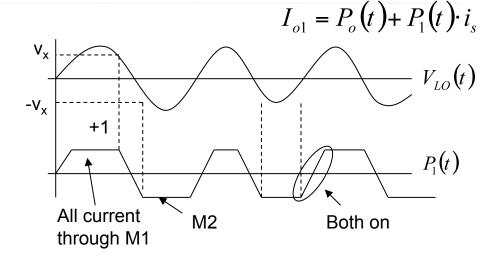
(After Terrovitis, JSSC)



$$I_{o1} = I_1 - I_2 = F(V_{LO}(t), I_B + i_s)$$

Assume i_s is small relative to I_B and perform Taylor series expansion

$$I_{o1} \approx F(V_{LO}(t), I_B) + \frac{\delta F}{\delta I_B}(V_{LO}(t), I_B) \cdot i_s + \dots$$



UC Berkeley EECS 242

Noise in Current Commutating Mixers

Note that with good device matching p₁(t) =
$$\frac{1}{i_s} = \frac{1}{g_{m2}}$$

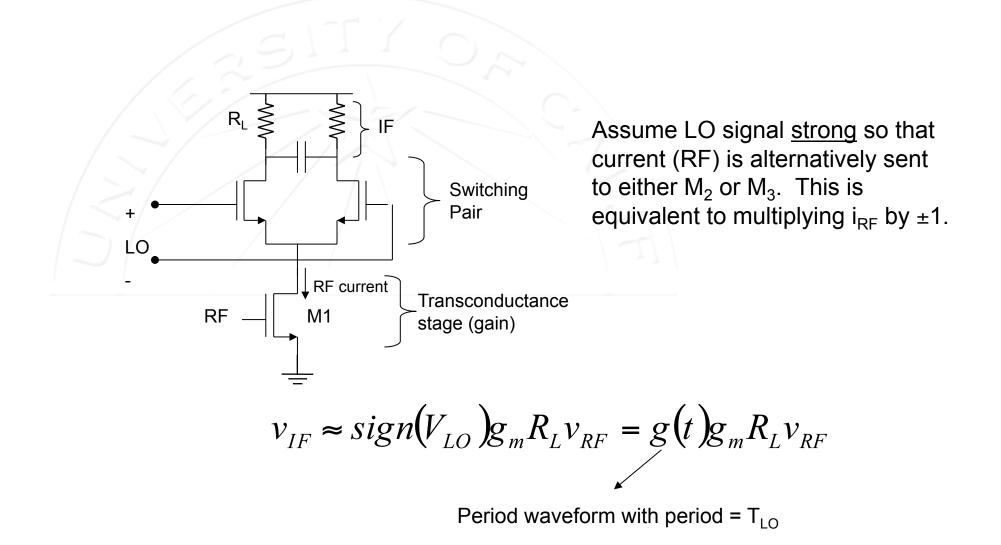
 $\frac{i_1}{i_s} = \frac{1}{g_{m2}}$
 $\frac{i_2}{i_s} = \frac{1}{g_{m1}}$
 $\frac{i_2}{i_s} = \frac{1}{g_{m1}}$
 $\frac{1}{g_{m1}} + \frac{1}{g_{m2}}$
 $\frac{1}{g_{m1}} + \frac{1}{g_{m2}}$
 $\frac{1}{g_{m1}} + \frac{1}{g_{m2}}$
 $p_1(t) = \frac{g_{m1}(t) - g_{m2}(t)}{g_{m1}(t) + g_{m2}(t)} \left(= \frac{i_1 - i_2}{i_s} \right)$
Note that with good device matching $p_1(t) = -p_1\left(t + \frac{T_o}{2}\right)$
Expand p₁(t) into a Fourier series:

$$p_{1,2k} = \frac{1}{T_{LO}} \int_{0}^{T_{LO}} p_1(t) e^{-j2\pi 2kt/T_{LO}} dt = \int_{0}^{T_{LO}/2} + \int_{T_{LO}/2}^{T_{LO}} = 0$$

Only odd coefficients of p_{1,n} non-zero

UC Berkeley EECS 242

Single Balanced Mixer



Current Commutating Mixer (2)

$$g(t) = square wave = \frac{4}{\pi} (\cos \omega_{LO} t - \cos 3\omega_{LO} t + ...)$$
Let $V_{RF} = A \cos \omega_{RF} t$

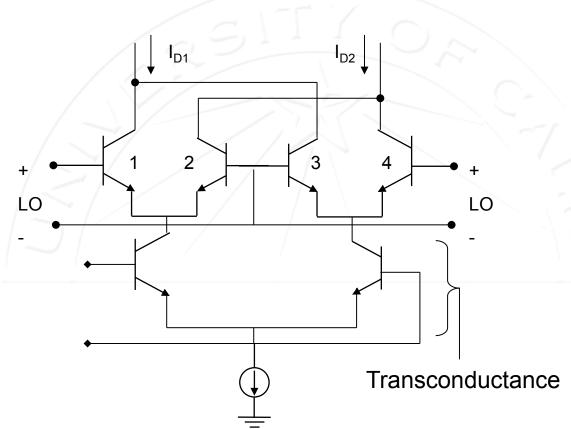
$$LPF(v_{IF}) = \frac{4}{\pi} \frac{1}{2} \cos(\omega_{RF} - \omega_{LO}) t \cdot g_m R_L \cdot A$$

$$A_v = \frac{\widetilde{v}_{IF}}{A} = \frac{2}{\pi} g_m R_L \quad \underline{gain}$$

LO-RF isolation good, but LO signal appears in output (just a diff pair amp). Strong LO might desensitize (limit) IF stage (even after filtering).

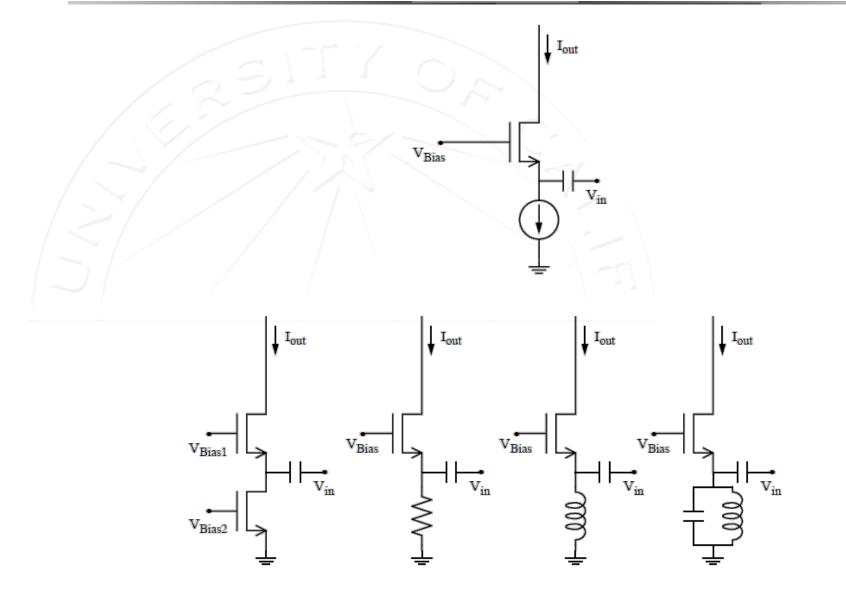
UC Berkeley EECS 242

Double Balanced Mixer



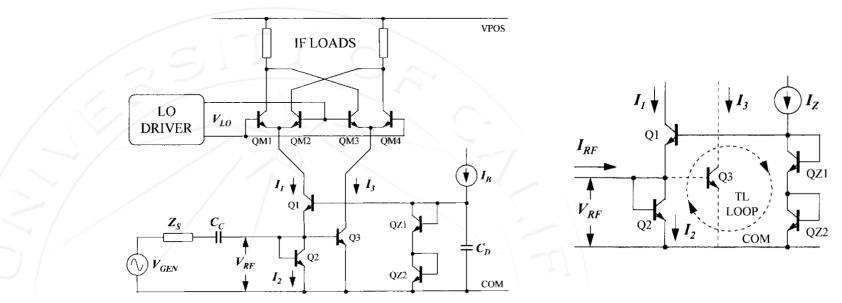
- LO signal is rejected up to matching constraints
- Differential output removes even order non-linearities
- Linearity is improved:
 Half of signal is processed by each side
- ductance Noise higher than single balanced mixer since no cancellation occurs

Common Gate Input Stage



UC Berkeley EECS 242

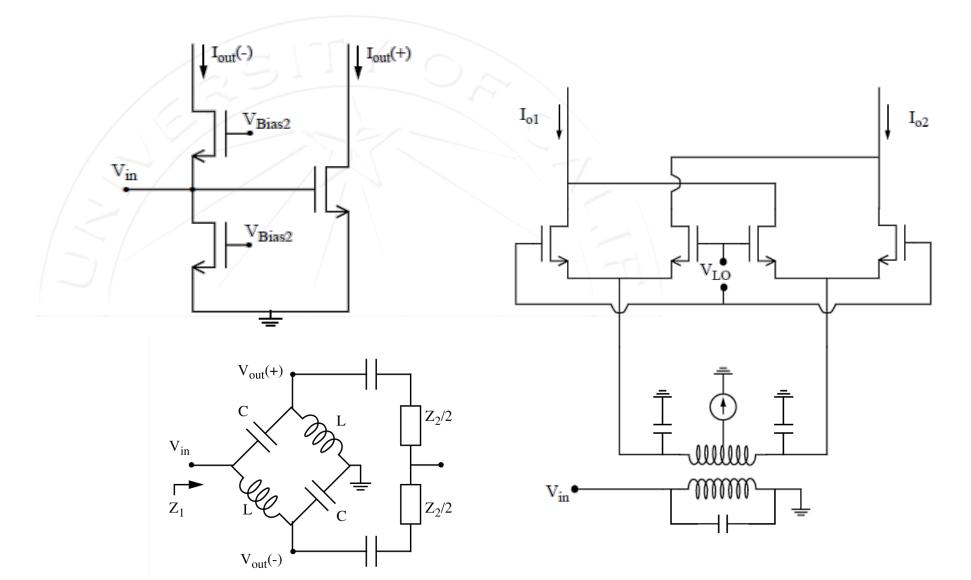
Gilbert Micromixer



- The LNA output is often single-ended. A good balanced RF signal is required to minimize the feedthrough to the output. LC bridge circuits can be used, but the bandwidth is limited. A transformer is a good choice for this, but bulky and bandwidth is still limited.
- A broadband single-ended to differential conversion stage is used to generate highly balanced signals. Gm stage is Class AB.

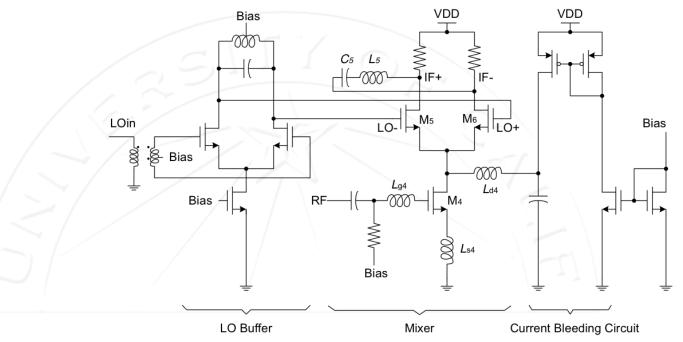
UC Berkeley EECS 242

Active and Passive Balun



UC Berkeley EECS 242

Bleeding the Switching Core



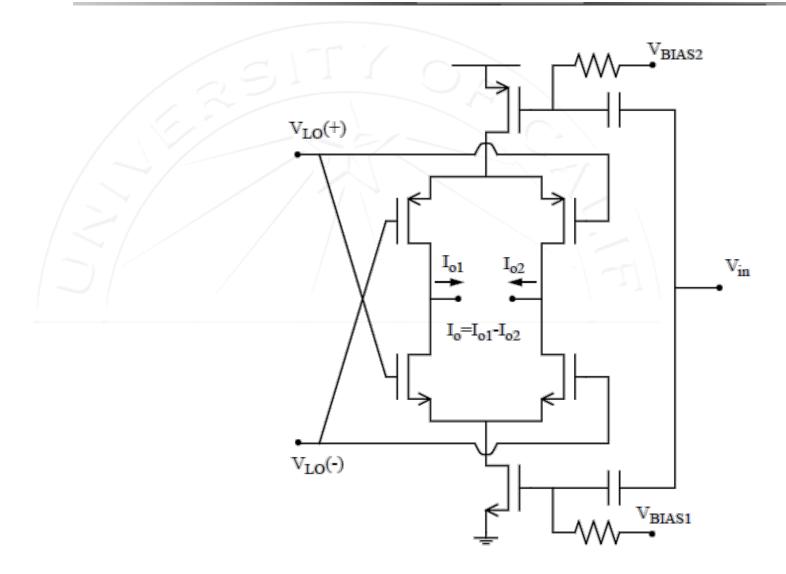
2006

- Large currents are good for the gm stage (noise, conversion gain), but require large devices in the switching core → hard to switch due to capacitance or requires a large LO (large Vgs-Vt)
- A current source can be used to feed the Gm stage with extra current.
 [3] J. Park, C.-H. Lee, B.-S. Kim, J. Laskar, "Design and Analysis of Low Flicker Noise CMOS Mixers for Direct-Conversion Receivers," *IEEE*

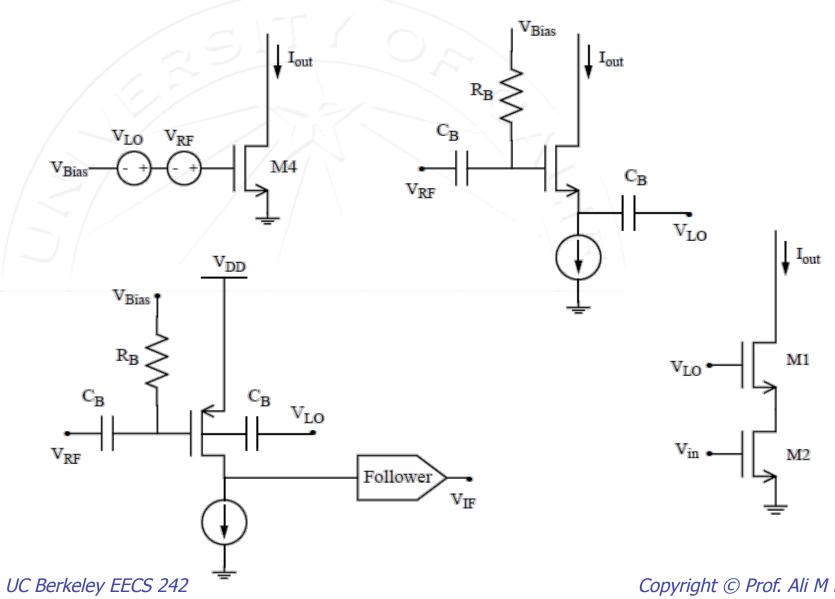
Trans. Microwave Theory Tech., vol.54, no.12, pp. 4372-4380, December

UC Berkeley EECS 242

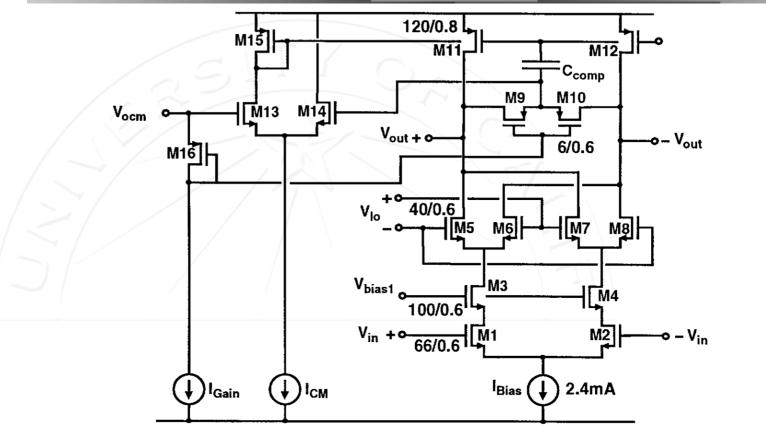
Current Re-Use Gm Stage



Single, Dual, and Back Gate



Rudell CMOS Mixer



- Gain programmed using current through M16 (set by resistance of triode region devices M9/M10)
- Common mode feedback to set output point

Cascode improves isolation (LO to RF)
 UC Berkeley EECS 242

lacques

C. Rudell, Student Mem George Chien, Student

and Paul R. Gray,

Receiver for Cordless

Telephone

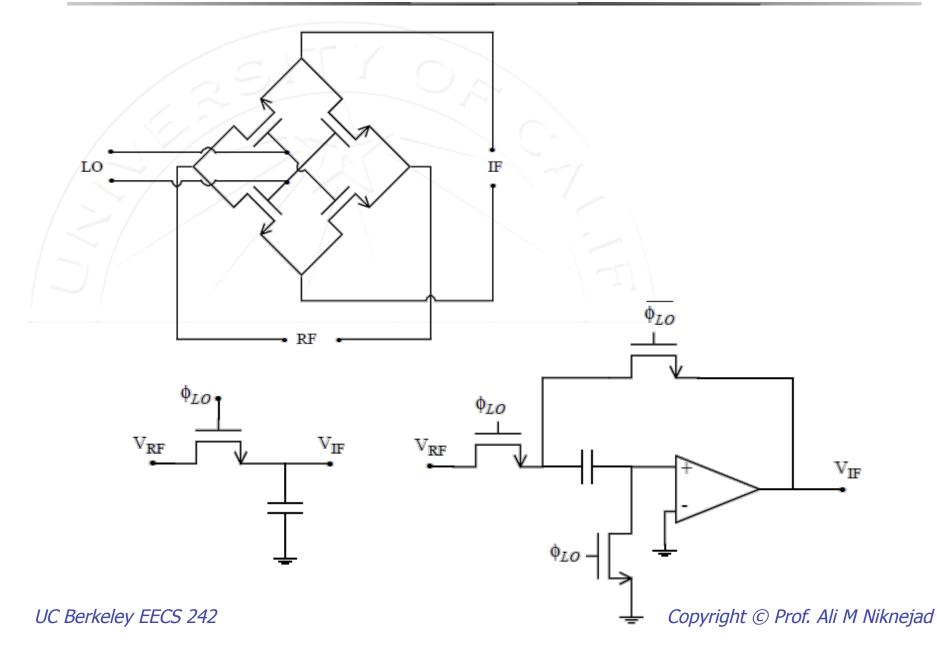
Applications

Thomas Byunghak Cho, Member, IEEE Weldon, Student Member, IEEE, **Double Conversion CMOS**

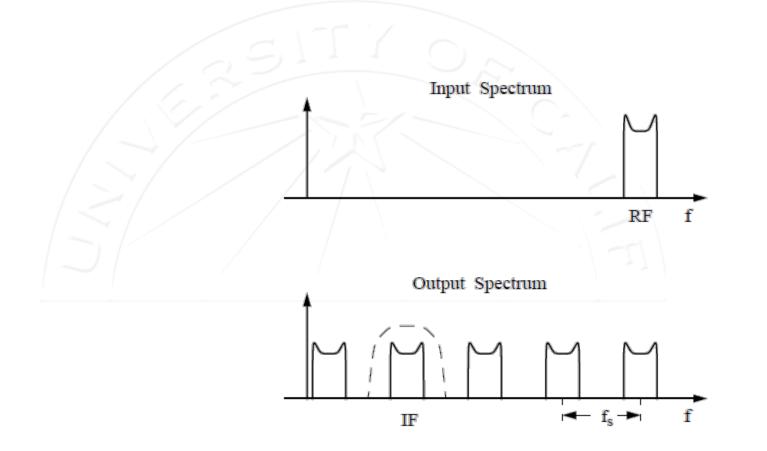
 \triangleright

.9-GHz Wide-Band IF

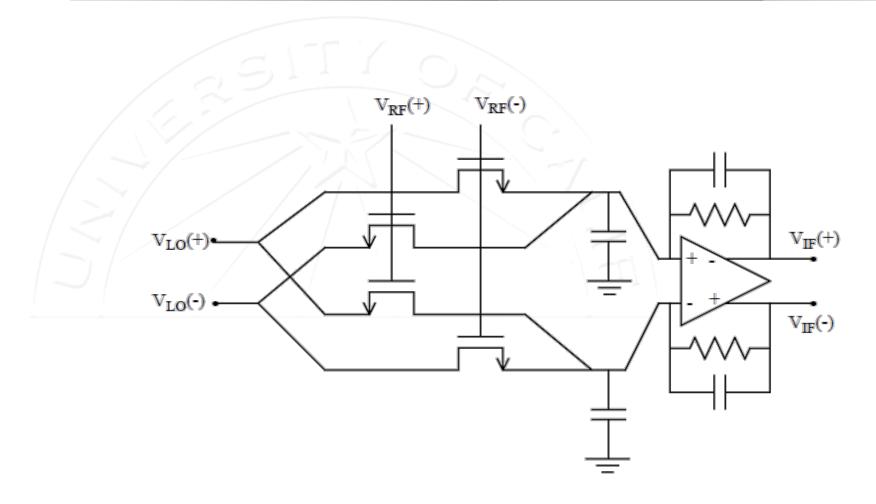
Passive Mixers/Sampling



Sub-Sampling Mixers

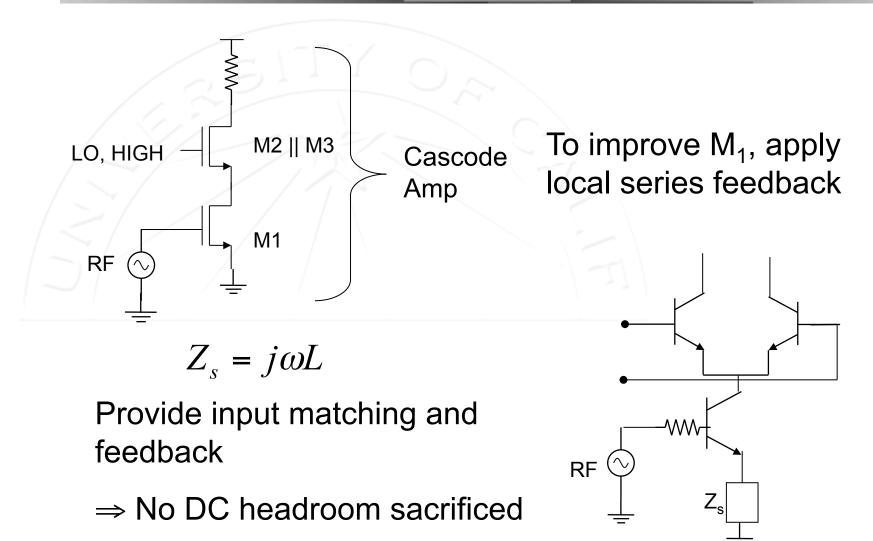


Triode Region Mixer

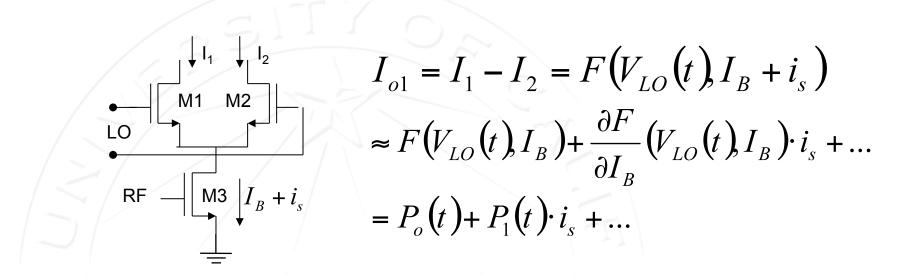


UC Berkeley EECS 242

Improved Linearity



Recap: CMOS Mixer Operation



$$P_{1}(t) = \frac{g_{m1}(t) - g_{m2}(t)}{g_{m1}(t) + g_{m2}(t)}$$
 Periodic
Fourier Series expansion

$$P_{1,2k} \equiv 0 \qquad P_{1}(t) = -P_{1}\left(t + \frac{T_{LO}}{2}\right)$$

UC Berkeley EECS 242

References

- Noise in current-commutating CMOS mixers Terrovitis, M.T.; Meyer, R.G.;
 <u>Solid-State Circuits, IEEE Journal of</u> Volume 34, Issue 6, June 1999 Page(s):772 - 783
- Intermodulation distortion in current-commutating CMOS mixers Terrovitis, M.T.; Meyer, R.G.;
 <u>Solid-State Circuits, IEEE Journal of</u> Volume 35, Issue 10, Oct. 2000 Page(s):1461 – 1473
- A systematic approach to the analysis of noise in mixers Hull, C.D.; Meyer, R.G.;
 <u>Circuits and Systems I: Fundamental Theory and</u>
 <u>Applications, IEEE Transactions on [see also Circuits and</u>
 <u>Systems I: Regular Papers, IEEE Transactions on]</u>
 Volume 40, Issue 12, Dec. 1993 Page(s):909 - 919

UC Berkeley EECS 242