Smith Chart[†] notes

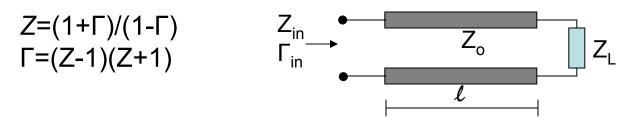
- 1. A graphical method of solution for T-line calculations (and avoid calculations with complex numbers and exponentials)
- 2. A graphical method for passive network calculationsa) matching
 - b) impedance transformation
- 3. A graphical method for amplifier and oscillator design
 - a) bilinear transformation (circles mapping into circles)
 - b) preservation of matching theorem
 - c) signal flow analysis of circuits

[†]Philip H. Smith from Bell Labs. "Transmission-line calculator," *Electronics*, vol. 12, p.29, January 1939. and "An improved transmission line calculator," *Electronics*, vol. 17, p. 130, January 1944. "Electronic Applications of the Smith Chart: in waveguide, circuit and component analysis," P.H. Smith, Krieger Publishing Co., 1983

1

Preliminaries

a) 1-to-1 correspondence between Z and Γ



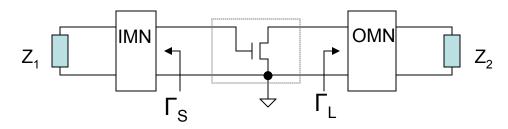
b) T.Line problems involve analysis of how Γ (or Z) varies along the line with distance from load or generator

c) Amplifiers and oscillator designs follow the procedure:

- get

(i) transistor data [S] (and Noise parameters)

- (ii) required specifications for LNA or Oscillator
- Find Γ_{S} and Γ_{L} to attend specifications
- Realize Γ_{S} and $\Gamma_{L}\,$ from known source and load impedances



Bilinear Transformations

In a complex plane, a circle with center at (x_o, y_o) and radius *R* is described by

 $(x-x_o)^2 + (y-y_o)^2 - R^2 = 0$

or

Now, let Z = x+jy, $Z_o = x_o+jy_o$. The circle equation can be written as

or

by inspection we will want to find Z_o and R in new expressions

Niknejad & Franca-Neto

Recall circle equation:

 $ZZ^{*}-ZZ_{o}^{*}-Z^{*}Z_{o}+(Z_{o}Z_{o}^{*}-R^{2})=0$

4

Consider the bilinear transformation:

W=(*AZ*+*B*)/(*CZ*+*D*) *A*, *B*, *C*, *D* are complex constants. *W* and *Z* are complex variables.

(i) This transformation will map circles in the *Z*-plane into circles in the *W*-plane.(i) Straight lines are limiting cases.

<u>Case 1</u>) Let $||W|^2 = \rho^2$ or $WW^* - \rho^2 = 0$; a circle centered at the origin.

Using the transformation, we get: $(AZ+B)/(CZ+D) (A*Z*+B*)/(C*Z*+D*) - \rho^2 = 0$

Expanding: $ZZ^*(AA^* - \rho^2 CC^*) - Z(\rho^2 CD^* - AB^*) - Z^*(\rho^2 C^* D - A^*B) + BB^* - \rho^2 DD^* = 0$

By comparison, this is a circle with center (coefficient of "-Z*"): $Z_{o} = (\rho^{2}C^{*}D - A^{*}B)/(AA^{*} - \rho^{2}CC^{*}) = (\rho^{2}C^{*}D - A^{*}B)/(|A|^{2} - \rho^{2}|C|^{2})$

Radius is found from constant term that is "(ZoZo*-R2)": $R^2 = Z_o Z_o^* - (|B|^2 - \rho^2 |D|^2) / (|A|^2 - \rho^2 |C|^2) => R = \rho(|AD-BC|) / (|A|^2 - \rho^2 |C|^2)$

Niknejad & Franca-Neto

EECS 217: Microwave Circuit Design

<u>Case 2</u>) Let $|W-W_o|^2 = \rho^2$; a circle centered at W_o .

Then: $W-W_o = (AZ+B)/(CZ+D)-W_o = [(A-CW_o)Z+(B-DW_o)]/(CZ+D)$

We make $A'=A-CW_o$; $B'=B-DW_o$, and reuse the equations of case 1. Thus making Z also describe a circle.

Many amplifier design relations involves bilinear transformations. Example: input coefficient of reflection (Γ_{in}) as a function of the load (Γ_{L})

 $\Gamma_{in} = (\Delta \Gamma_L - S_{11}) / (S_{22} \Gamma_L - 1)$ $\Delta = S_{11} S_{22} - S_{12} S_{21}$

Niknejad & Franca-Neto

Smith chart "r" and "x" circles

Given a lossless T.line with characteristic impedance $Z_0 = R_0$, terminated by an impedance Z_L , we write

 $\Gamma = \Gamma_r + j\Gamma_i = (Z_L - R_o)/(Z_L + R_o)$

Which after normalization by Ro, leads to

 $\Gamma = \Gamma_r + j\Gamma_i = (z_L - 1)/(z_L + 1)$ where $z_L = Z_L/Ro$

Therefore:

 $z_{L} = r + jx = (1 + \Gamma)/(1 - \Gamma) = [(1 + \Gamma_{r}) + j\Gamma_{i}]/[(1 - \Gamma_{r}) - j\Gamma_{i}]$

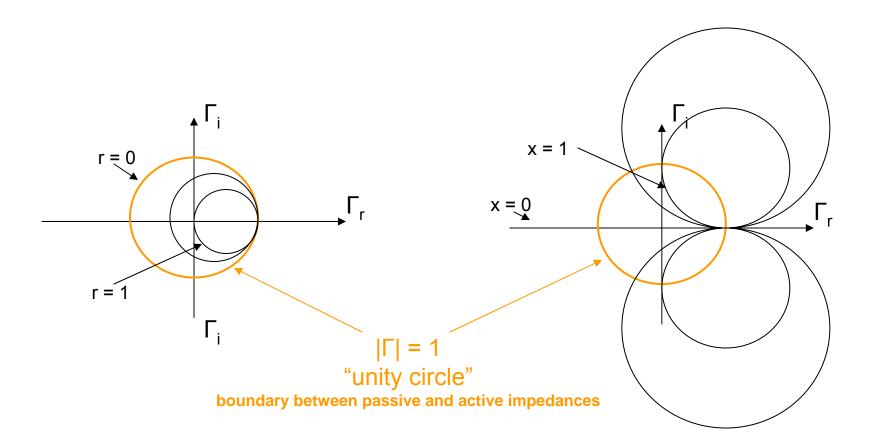
And, after multiplying numerator and denominator by complex conjugate of denominator, we reach

 $r = (1 - \Gamma_r^2 - \Gamma_i^2) / [(1 - \Gamma_r)^2 + \Gamma_i^2)]$ $x = 2\Gamma_i / [(1 - \Gamma_r)^2 + \Gamma_i^2)]$

Smith chart "r" and "x" circles ... cont.

Then, circles in the Γ -plane parameterized by "r" and "x" are:

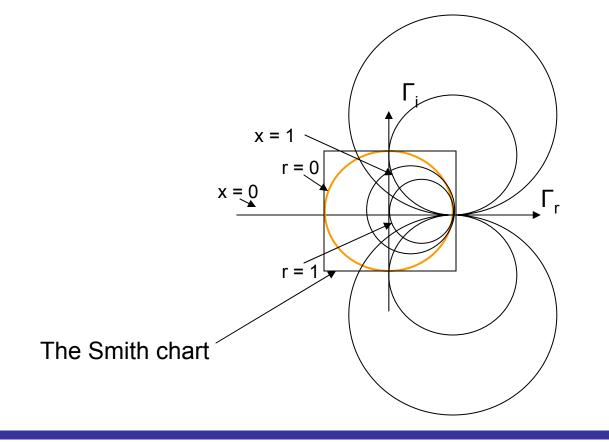
 $[\Gamma_r - r/(r+1)]^2 + \Gamma_i^2 = [1/(1+r)]^2$ and $(\Gamma_r - 1/x)^2 + (\Gamma_i - 1/x)^2 = (1/x)^2$



Smith chart "r" and "x" circles ... cont.

The Smith chart for $|\Gamma|$ less or equal to 1 (unity circle) represents all the passive impedances. Values of Γ higher than 1 require power gain and represent impedances that can only be produced by active devices.

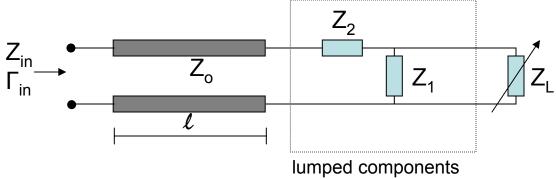
Overlaying Γ circles parameterized by "r" and "x" leads to the Smith chart below.



Niknejad & Franca-Neto

Example of Smith chart methods: solving a problem

An engineer makes measurements for Z_{in} using the following network



The lumped-components box has fixed impedances Z_1 and Z_2 .

All these impedances are made of passive association of resistors, inductors and capacitors.

 Z_L is a variable impedance created by moving a short along a lossless T.line stub. A piece of lossless T.line of length, ℓ , transforms the impedance from the lumped component box to the Z_{in} impedance to be measured.

4 measurements were made for Z_{in} for 4 different values of Z_L , and they resulted: Zin(1) = 0.290+j0.420 Zin(2) = 0.026+j0.174 Zin(3) = 0.130+j0.690Zin(4) = 0.362-j0.045

When the engineer showed the 4 results to his manager, his manager replied one of the measurements was wrong. How can he tell and which is the wrong one?