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A Generic Amplifier
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Consider the generic two-port (e.g. amplifier or filter) shown above. A port is
defined as a terminal pair where the current entering one terminal is equal and
opposite to the current exiting the second termianl.

Any circuit with four terminals can be analyzed as a two-port if it is free of
independent sources and the current condition is met at each terminal pair.

All the complexity of the two-port is captured by four complex numbers (which
are in general frequency dependent).
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The Need for Two-Ports
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Actual device contains not only a
“simple” hybrid-π model, but also an
extrinsic device model including RC
parasitics and possibly inductance
(especially for a packaged device).

There are many internal feedback
paths in the device itself, in addition
explicitly placed external feedback
elements

While the small-signal parameters tend to go from 3-4 parameters to dozens to
hundreds, the two-port parameters are just four complex number over a narrow
range of frequencies. This is very useful for analysis.
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Two-Port Parameters

There are many two-port parameter set, which are all equivalent in their
description of the two-port, including the admittance parameters (Y ), impedance
parameters (Z ), hybrid or inverse-hybrid parameters (H or G ), ABCD, scattering
S , or transmission (T ).

Y and Z paramters relate the port currents (voltages) to the port voltages
(currents) through a 2x2 matrix. For example(

v1
v2

)
=

(
z11 z12
z21 z22

)(
i1
i2

) (
i1
i2

)
=

(
y11 y12
y21 y22

)(
v1
v2

)

Hybrid parameters choose a combination of v and i . For example hybrid H and
inverse hybrid G (dual)
(
v1
i2

)
=

(
h11 h12
h21 h22

)(
i1
v2

) (
i1
v2

)
=

(
g11 g12
g21 g22

)(
v1
i2

)
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Scattering Parameters

Even if we didn’t know anything about incident and reflected waves, we could
define scattering parameters in the following way. Define two new quantities v+

and v− as linear combinations of v and i (parameterized by Z0) which are related

to the available power from the source (v+
2
/2Z0) and the reflected or unused

power absorbed by the network (v−
2
/2Z0)

v+ = v + iZ0

v− = v − iZ0

Since votlage and current are related by Z (or Y ), we expect the same to be true
of V+ and v− through a new matrix

v− = Sv+
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Scattering Parameters

We have already derived the relation between Z and S . The important point is
that S is just another N-port parameter set like Z/Y /H/G and ABCD family.
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Two-Port Parameters
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I I

+
v
−

i i

j j

I1 = i1 + j1

I2 = i2 = j2

V1 = v1 = u1

V2 = v2 + u2

Notice that a series connection of two two-ports implies the same current flows
through both two-ports whereas the voltage across the two-ports is the sum of the
individual voltages.

On the other hand, a shunt connection of two two-ports implies the same voltage
is applied across both two-ports whereas the current into the two-ports is the sum
of the individual currents.

These simple observations allow us to simply sum two-port parameters for various
shunt/series interconnections of two-ports.
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Choosing Two-Port Parameters
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The choice of parameter set is usually determined by convenience. For instance, if
shunt feedback is applied, Y parameters are most convenient, whereas series
feedback favors Z parameters. Other combinations of shunt/series can be easily
described by H or G .

ABCD parameters are useful for cascading two-ports.

8 / 34



Feedback Example
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I I

I1 = i1 + j1

I2 = i2 = j2

V1 = v1 = u1

V2 = v2 + u2

Amplifier

Feedback

Any real feedback amplifier is non-ideal due to instrinsic feedback in the amplifier
itself (bilateral nature) and the feedforward through the feedback network.

The feedback network also loads the primary amplifier.

It’s hard to apply ideal signal flow analysis to the real circuit unless...
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Feedback Example (cont)
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g21 + g21 g22 + g22

0 g12 + g12
0 0

�

Since the overall two-port parameters of the amplifier in closed loop is simply the
sum of the amplifier and feedback network two-port parameters, we can simply
move the non-idealities of the feedback network (loading and feedforward) into
the main amplifier and likewise move the instrinsic feedback of the amplifier to
the feedback network.

Now we can use ideal feedback analysis.
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Series — Shunt Feedback
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(a) Series-Series (b) Series-Shunt
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(c) Shunt-Series (d) Shunt-Shunt
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Choice of Feedback Parameters

+
V
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Which two variables (v or i) are the same for both two-ports: i1 = iA1 = iB1 and
v2 = vA2 = V B

2 Make these the independent variables.
Which two variables (v or i) sum to form the two-port variables: v1 = vA1 + vB1
and i2 = iA2 + iB2 . Make these the dependent variables.
Order variables with the first row port 1, and the second row port 2.

(
v1
i2

)
=

(
v1
i2

)A

+

(
v1
i2

)B

= (HA + HB)

(
i1
v2

)
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Y Parameters

In this lecture we’ll primarily use the Y parameters

(
i1
i2

)
=

(
y11 y12
y21 y22

)(
v1
v2

)

But our choice is arbitrary. We’re lucky because many of the results that we
derive in terms of Y-parameters can be applied to other two-port parameters
exactly (input impedance, output impedance, gain, etc).

Remember all 2-port parameters are different representations of the same two-port
and therefore must yield the same answer for any question. It is relatively easy to
convert between different two-port represeanations.
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Admittance Parameters

Notice that y11 is the short circuit input admittance

y11 =
i1
v1

∣∣∣∣
v2=0

The same can be said of y22. The forward transconductance is described by y21

y21 =
i2
v1

∣∣∣∣
v2=0

whereas the reverse transconductance is described by y12.

If a two-port amplifier is unilateral, then y12 = 0
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Why Use Two-Port Parameters?

The parameters are generic and independent of the details of the amplifier → can
be a single transistor or a multi-stage amplifier

High frequency transistors are more easily described by two-port parameters (due
to distributed input gate resistance and induced channel resistance)

Feedback amplifiers can often be decomposed into an equivalent two-port
unilateral amplifier and a two-port feedback section

We can make some very general conclusions about the “optimal” power gain of a
two-port, allowing us to define some useful metrics
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Calculations with Two-Ports
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Hybrid-Π Admittance Example

roCin

Cµ

gmvin
+
vin
−

Yπ

Yµ

Yo

Rin Co

Let’s compute the Y parameters for the common hybrid-Π model

y11 = yπ + yµ

y21 = gm − yµ

gmvinYπ

Yµ

Yo

+
v1
−

i2

+
v2
−
= 0
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Hybrid-Π Example (cont)

y22 = yo + yµ

y12 = −yµ
gmvinYπ

Yµ

Yo

+
v2
−

i1

+
v1
−
= 0

Note that the hybrid-π model is unilateral if yµ = sCµ = 0. Therefore it’s
unilateral at DC.

A good amplifier has a high ratio y21
y12

because we expect the forward
transconductance to dominate the behavior
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Voltage Gain and Input Admittance

Since i2 = −v2YL, we can write

(y22 + YL)v2 = −y21v1

Which leads to the “internal” two-port gain

Av =
v2
v1

=
−y21

y22 + YL

Check low freq limit for a hybrid-Π: Av = −gmZo ||ZL ✓
The input admittance is easily calculated from the voltage gain

Yin =
i1
v1

= y11 + y12
v2
v1

Yin = y11 −
y12y21

y22 + YL
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Output Admittance

By symmetry we can write down the output admittance by inspection

Yout = y22 −
y12y21

y11 + YS

Note that for a unilateral amplifier y12 = 0 implies that

Yin = y11

Yout = y22

The input and output impedance are de-coupled!
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External Voltage Gain

The gain from the voltage source to the output can be derived by a simple voltage
divider equation

A′
v =

v2
vs

=
v2
v1

v1
vs

= Av
YS

Yin + YS
=

−YSy21
(y22 + YL)(YS + Yin)

If we substitute and simplify the above equation we have

A′
v =

−YSy21
(YS + y11)(YL + y22)− y12y21

Verify that this makes sense at low frequency for hybrid-Π:

A′
v (DC ) =

−YSy21
(YS + y11)(YL + y22)

=
Zin

Zin + ZS
×−gmRL||ro
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Feedback Amplifiers and Y -Params

Note that in an ideal feedback system, the amplifier is unilateral and the closed
loop gain is given by y

x = A
1+Af

We found that the voltage gain of a general two-port driven with source
admittance YS is given by

A′
v =

−YSy21
(YS + y11)(YL + y22)− y12y21

If we unilaterize the two-port by arbitrarily setting y12 = 0, we have an “open”
loop forward gain of

Avu = A′
v

∣∣
y12=0

=
−YSy21

(YS + y11)(YL + y22)
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Identification of Loop Gain

Re-writing the gain A′
v by dividing numerator and denominator by the factor

(YS + y11)(YL + y22) we have

A′
v =

−YSy21
(YS+y11)(YL+y22)

1− y12y21
(YS+y11)(YL+y22)

We can now see that the “closed” loop gain with y12 ̸= 0 is given by

A′
v =

Avu

1 + T

where T is identified as the loop gain

T = Avuf =
−y12y21

(YS + y11)(YL + y22)
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The Feedback Factor and Loop Gain

Using the last equation also allows us to identify the feedback factor

f =
Y12

YS

If we include the loading by the source YS , the input admittance of the amplifier
is given by

Yin = YS + y11 −
y12y21

YL + y22

Note that this can be re-written as

Yin = (YS + y11)

(
1− y12y21

(YS + y11)(YL + y22)

)
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Feedback and Input/Output Admittance

The last equation can be re-written as

Yin = (YS + y11)(1 + T )

Since YS + y11 is the input admittance of a unilateral amplifier, we can interpret
the action of the feedback as raising the input admittance by a factor of 1 + T .

Likewise, the same analysis yields

Yout = (YL + y22)(1 + T )

It’s interesting to note that the same equations are valid for series feedback using
Z parameters, in which case the action of the feedback is to boost the input and
output impedance.
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Two-Port Stability
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Stability and Negative Resistance

�(Zin) < 0

Active
Network

Passive Termination
+
vs
−

is

+
vR
−

iR

vs
is

= −R
vR
iR

= R

Loosely speaking, a two-port network is stable if it does not oscillate. Oscillation
occurs when the two-port can deliver power.

The two-port sources power to the RLC termination shown above .

Notice that when a voltage source is sourcing power to resistor R, the voltage to
current ratio is negative

27 / 34



More Rigorous Proof of Stability

The two-port network is unstable if it supports non-zero currents/voltages with
passive terminations (

i1
i2

)
=

(
y11 y12
y21 y22

)(
v1
v2

)

Since i1 = −v1YS and i2 = −v2YL

(
y11 + YS y12

y21 y22 + YL

)(
v1
v2

)
= 0

The only way to have a non-trial solution is for the determinant of the matrix to
be zero at a particular frequency
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Conditions for Instablility: Loop Gain

Taking the determinant of the matrix we have

(YS + y11)(YL + y22)− y12y21 = 0

Let’s re-write the above in the following form

1− y12y21
(y22 + YL)(y11 + YS)

= 0

or
1 + T = 0

Where we have identified the loop gain T . We can clearly see that instability
implies that T = −1, which is exactly what we learned in feedback system
analysis.
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Conditions for Instablility: Impedance

Going back to the determinant of the matrix we have

(YS + y11)(YL + y22)− y12y21 = 0

Now let’s re-write the above in the following form

YS + y11 −
y12y21

y22 + YL
= 0

or
YS + Yin = 0

Or equivalently
YL + Yout = 0
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Stability (cont)

A network is unstable at a particular frequency if YS + Yin = 0, which means the
condition is satisfied for both the real and imaginary part. In particular

ℜ(YS + Yin) = ℜ(YS) + ℜ(Yin) = 0

Since the terminations are passive, ℜ(YS) > 0 which implies that

ℜ(Yin) < 0

The same equations also show that

ℜ(Yout) < 0

So if these conditions are satisfied, the two-port is unstable
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More on Stability

The conditions for stability are a function of the source and load termination

ℜ(Yin) = ℜ
(
y11 −

y12y21
YL + y22

)
> 0

ℜ(Yout) = ℜ
(
y22 −

y12y21
YS + y11

)
> 0

For a unilateral amplifier, the conditions are simple and only depend on the
two-port

ℜ(y11) > 0

ℜ(y22) > 0
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Stability Factor

In general, it can be shown that a two-port is absolutely stable iff

ℜ(y11) > 0

ℜ(y22) > 0

k > 1

The stability factor k is given by

k =
2ℜ(y11)ℜ(y22)−ℜ(y12y21)

|y12y21|

The stability of a unilateral amplifier with y12 = 0 is infinite k = ∞ which implies
absolute stability since as long as ℜ(y11) > 0 and ℜ(y22) > 0
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A Preview: Degrees of Stability

A amplifier with absolute stability or unconditional stability (k > 1) means that
the two-port is stable for all passive terminations at either the load or the source.

If k < 1, then the system can be conditionally stable, or stable for a range of
source/load impedances. This range of impedance is very easily calculated using
scattering parameters. It’s also possible for a system to be completely unstable.

Unconditional stability is very conservative if the source and load impedance is
well specified and well controlled.

But in certain situations the load or source impedance may vary greatly. For
instance the input impedance of an antenna can vary if the antenna is
disconnected, bent, shorted, or broken.

An unstable two-port can be stabilized by adding sufficient loss at the input or
output to overcome the negative conductance.
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