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“RF design is all about impedance matching.” Inductors and capacitors are handy
elements at impedance matching.

Viewed as a black-box, an impedance matcher changes a given load resistance RL

to a source resistance RS . Without loss of generality, assume RS > RL, and a
power match factor of m = RS/RL is desired. In fact any matching network that
boosts the resistance by some factor can be flipped over to do the opposite
matching.
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Why Play the Matchmaker?

Optimal Power Transfer: Maximize the power transfer from the source (say an
antenna) and the load (say an amplifier). Most amplifiers have a capacitive input
impedance and a small resistive part.

Optimal Noise Figure: Build amplifiers that add the least amount of noise to a
signal while performing amplification. We’l see that this depends on the source
impedance, so you’ll need to transform the source.

Minimum Reflections in Transmission Lines: Reflections cause
dispersion/inter-symbol interference (“ghost” in analog TV), and result in a
sensitive input impedance when looking in the transmission line (changes with
distance).

Optimal Efficiency: Power amplifiers obtain maximum efficiency when we utilize
the largest possible voltage swing at the drain (collector) node, requiring us to
match the load to a value that satisfies the conditions on load power and load
swing.
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Matching Gain

Since RL = vo/io and RS = vi/ii , we can see that this transformation can be
achieved by a voltage gain, vi = kvo . Assuming the black box is realized with
passive elements without memory, power conservation implies

iivi = iovo

thus the current must drop by the same factor, ii = k−1io , resulting in

Zin =
vi
ii

=
kvo
k−1io

= k2
vo
io

= k2RL

which means that k =
√
m to achieve an impedance match. There are many ways

to realize such a circuit block. Transformers are a natural choice but in this
section we’ll explore techniques employing inductors and capacitors.
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What about for a “voltage” amplifier (very small Rgate)?

Matching
Network

gm vgs r o

vo vL

R L

Since the dawn of the RF age, people have argued about matching. Is it really
necessary, for example, when you’re designing a voltage amplifier and you don’t
care about T-line effects (circuit is small relative to wavelength) ?

Consider the scenario above, what looks like the output of a FET or BJT driving a
load through an optional matching network M.

If we don’t match, we get a voltage gain of gmro ||RL. Can we do better?
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Output Match for Voltage Gain
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Recall that the input voltage across the gate can be boosted by the Q factor of
the network ! This can provide a lot of gain.

The Q factor is determined by the driving Rs and the component Q values
(including the gate capaitor).
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Output Match for Voltage Gain

RLCin ro

m: 1
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Step Down !
RL < ro

It’s easy to imagine that for voltage gain, you should not match at all, since it
seems that matching reducing the load resistance by a factor of 2 compared to an
open circuit load.

This is somewhat non-intuitive but it actually helps to match because if you drop
the voltage across the load with a transformer or matching network by a factor of
m, the impedance seen by the amplifier is larger by m2, so the net gain in voltage
is potentially m ! Of course, the output of the amplifier loads and you cannot do
this for any arbitrarily large m.
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Voltage Gain Expression

Suppose the matching network transforms the load RL by a factor of m2 (since
output stages are usually higher impedance than the load, usually m > 1 but for
now let’s just keep it general).

vo = gmvgsro ||m2RL = gmvgs
rom

2RL

ro +m2RL

But that means the voltage at the load is smaller by a factor of m

vL = gmvgs
romRL

ro +m2RL
= gmroRL · vgs ·

(
m

ro +m2RL

)
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Optimal Voltage Gain

The optimum value of m can be found easily

d

dm

(
m

ro +m2RL

)
=

(ro +m2RL)−m22RL

(ro +m2RL)2
= 0

Solving for m, we find the optimal matching network for voltage is the same as
the one we found for power gain

mopt =
√

ro/RL

Which leads to the matched voltage gain of Gm

Gm =
vL
vgs

=
gmroRL

ro +
ro
RL
RL

√
ro
RL

Gm =
gm
2

√
RLro
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Voltage Gain: Match vs No Match

If we didn’t do any matching at all, recall the gain would be

Gu = gmro ||RL = gm
roRL

ro + RL

Taking the ratio we have

Gm

Gu
=

1
2

√
RLro

roRL
ro+RL

=
ro + RL

2
· 1√

RLro

Gm

Gu
=

AM

GM

Since the Geometric Mean (GM) is always less than the Arithmetic
Mean (AM), matching always wins. The benefit of matching
diminishes as ro and RL become comparable as shown in the table :

ro
RL

Gm
Gu

1 1
2 1.06
4 1.25
10 1.74
100 5.05
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Transmission Line Transformer
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Note that a transmission line has
the desired properties of
voltage/current gain if there’s a
standing wave on the line.

For example, if the source and load are both real impedances, then we can move
from high/low impedance to low/high impedance by adding a quarter wave line.

The voltage is maximimum at one end and minimum at the other end, and the
opposite is true for the current. So in effect the transmission line is a
voltage/current multiplier (resonator).
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Capacitive and Inductive Dividers
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Perhaps the simplest matching networks are simple voltage dividers. Consider the
capacitive voltage divider. At RF frequencies, if RL ≫ X2, then we can see that
the circuit will work as advertised. Assuming that negligible current flows into RL,
the current flowing into the capacitors is given by

i =
vi

j(X1 + X2)
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Cap. Dividers (cont)

The voltage across the is therefore

vo = vC2 = jX2 × i = vi
X2

X1 + X2
= vi

1

1 + C2
C1

= kvi

which means that the load resistance is boosted by a factor of k2

Rin ≈
(
1 +

C2

C1

)2

RL
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An L-Match
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Consider the L-Matching networks, named due to the topology of the network. We
shall see that one direction of the L-match boosts the load impedance (in series
with load) whereas the other lowers the load impedance (in shunt with the load).
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L-Match as an RLC

Let’s focus on the first two networks shown. Here, in absence of the source, we
have a simple series RLC circuit.

Recall that in resonance, the voltage across the reactive elements is Q times
larger than the voltage on the load! In essence, that is enough to perform the
impedance transformation.

Without doing any calculations, you can immediately guess that the impedance
seen by the source is about Q2 larger than RL. Furthermore, since the circuit is
operating in resonance, the net impedance seen by the source is purely real. To be
sure, let’s do the math.

15 / 42



Equiv. RLC

RS > RL

RL

L

C

2

L
=
(1
+
Q

− )L

R p
=
(1
+
Q
)R

L

L Rp

A quick way to accomplish this feat is to begin with the series to parallel
transformation, where the load resistance in series with the inductor is converted
to an equivalent parallel load equal to

Rp = (1 + Q2)RL

where Q = XL/RL, and X ′
L = XL(1 + Q−2).
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Equiv. RLC (cont.)

The circuit is now nothing but a parallel RLC circuit and it’s clear that at
resonance the source will see only Rp, or a boosted value of RL.

The boosting factor is indeed equal to Q2 + 1, very close to the value we guessed
from the outset.
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Norton Equiv.

RL
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To gain further insight into the operation, consider an Norton equivalent of the
same circuit.

Now the circuit is easy to understand since it’s simply a parallel resonant circuit.
We known that at resonance the current through the reactances is Q times larger
than the current in the load.

Since the current in the series element is controlled by the source voltage, we can
immediately see that is = QiL, thus providing the required current gain to lower
the load resistance by a factor of Q2.
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Series Resonant Equiv.

As you may guess, the mathematics will yield a similar result. Simply do a parallel
to series transformation of the load to obtain

Rs =
Rp

1 + Q2

X ′
p =

Xp

1 + Q−2

The resulting circuit is a simple series RLC circuit. At resonance, the source will
only see the reduced series resistance Rs .
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The Choice of Topology

The following design procedure applies to an L-match using the generic forms.
The actual choice between the forms depends on the application. For instance
some provide AC coupling (DC isolation) which may be required in many
applications. In other applications a common DC voltage may be needed, making
the networks with DC coupling the obvious choice.
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L-Match Design Equations

Let Rhi = max(RS ,RL) and Rlo = min(RS ,RL). The L-matching networks are designed
as follows:

1 Calculate the boosting factor m = Rhi
Rlo

.

2 Compute the required circuit Q by (1 + Q2) = m, or Q =
√
m − 1.

3 Pick the required reactance from the Q. If you’re boosting the resistance, e.g.
RS > RL, then Xs = Q · RL. If you’re dropping the resistance, Xp = RL

Q .

4 Compute the effective resonating reactance. If RS > RL, calculate
X ′
s = Xs(1 +Q−2) and set the shunt reactance in order to resonate, Xp = −X ′

s . If

RS < RL, then calculate X ′
p =

Xp

1+Q−2 and set the series reactance in order to
resonate, Xs = −X ′

p.

5 For a given frequency of operation, pick the value of L and C to satisfy these
equations.
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Insertion Loss of an L-Match

We’d like to include the losses in our passive elements into the design of the
matching network. The most detrimental effect of the component Q is the
insertion loss which reduces the power transfer from source to load.

Let’s begin by using our intuition to derive an approximate expression for the loss.
Note that the power delivered to the input of the matching network Pin can be
divided into two components

Pin = PL + Pdiss

where PL is the power delivered to the load and Pdiss is the power dissipated by
the non-ideal inductors and capacitors.

The insertion loss is therefore given by

IL =
PL

Pin
=

PL

PL + Pdiss
=

1

1 + Pdiss
PL
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Loss Calculation (cont.)

Recall that for the equivalent series RLC circuit in resonance, the voltages across
the reactances are Q times larger than the voltage across RL. We can show that
the reactive power is also a factor of Q larger. For instance the energy in the
inductor is given by

Wm =
1

4
Li2s =

1

4

v2s
4R2

S

L

or

ω0 ×Wm = 1
4

v2s
4RS

ω0L

RS
= 1

2

v2s
8RS

Q = 1
2PL × Q

where PL is the power to the load at resonance

PL =
v2L
2RS

=
v2s

4 · 2 · RS
=

v2s
8RS
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Reactive Power versus Load Power

The total reactive power is thus exactly Q times larger than the power in the load

ω0(Wm +We) = Q × PL (1)

By the definition of the component Qc factor, the power dissipated in the
non-ideal elements of net quality factor Qc is simply

Pdiss =
PL · Q
Qc

(2)

which by using the original forms of the equation immediately leads to the
following expression for the insertion loss

IL =
1

1 + Q
Qc

(3)
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Insights from Equation

The above equation is very simple and insightful. Note that using a higher
network Q, e.g. a higher matching ratio, incurs more insertion loss with the
simple single stage matching network. Furthermore, the absolute component Q is
not important but only the component Qc normalized to the network Q. Thus if
a low matching ratio is needed, the actual components can be moderately lossy
without incurring too much insertion loss.

Also note that the the actual inductors and capacitors in the circuit can be
modeled with very complicated sub-circuits, with several parasitics to model
distributed and skin effect, but in the end, at a given frequency, one can calculate
the equivalent component Qc factor and use it in the above equation.
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Reactance Absorption

RS < RL

L

C

RLLres CL

In most situations the load and source impedances are often complex and our
discussion so far only applies to real load and source impedances. An easy way to
handle complex loads is to simply absorb them with reactive elements.

For example, for the complex load shown, to apply an L-matching circuit, we can
begin by simply resonating out the load reactance at the desired operating
frequency. For instance, we add an inductance Lres in shunt with the capacitor to
produce a real load.

From here the design procedure is identical. Note that we can absorb the inductor
Lres into the shunt L-matching element.
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A Π-Match

RS > RL

RL

RS > RL

RL
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The L-Match circuit is simple and elegant but is somewhat constrained. In
particular, we cannot freely choose the Q of the circuit since it is fixed by the
required matching factor m. This restriction is easily solved with the Π-Matching
circuit, also named from its topology.
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Π Match

RLC1 C2

L1 L2

RS > Ri Ri < RL

The idea behind the Π match can be easily understood by studying the cascade of
two back-to-front L matches.

In this circuit the first L match will lower the load impedance to an intermediate
value Ri

Ri =
RL

1 + Q2
1

(4)

or

Q1 =

√
RL

Ri
− 1 (5)
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Π Match Step II

RL

jX1 jX2RS

RiRi−jX1 −jX2

Since Ri < RL, the second L match needs to boost the value of Ri up to Rs . The
Q of the second L network is thus

Q2 =

√
RS

Ri
− 1 >

√
RS

RL
− 1 (6)

The reflected input and output impedance are both equal to Ri at the center of
the Π network.
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Π Series LCR

Ri

jX1 jX2Ri

RiRi

−jX1 −jX2

When we combine the two L networks, we obtain a Π network with a higher Q
than possible with a single stage transformation. In general the Q, or equivalently
the bandwidth B = ω0

Q , is a free parameter that can be chosen at will for a given
application.

Note that when the source is connected to the input, the circuit is symmetric
about the center. Now it’s rather easy to compute the network Q by drawing a
series equivalent circuit about the center of the structure.
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Q of Π Network

If the capacitors and inductors in series are combined, the result is a simple RLC
circuit with Q given by

Q =
X1 + X2

2Ri
=

Q1 + Q2

2

It’s important to note the inclusion of the source resistance when calculating the
network Q as we are implicitly assuming a power match. In a power amplifier, the
source impedance may be different and the above calculation should take that
into consideration.

For instance, if the PA is modeled as a high impedance current source (Class A/B
operation), then the factor of 2 disappears.
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A T-Match

RS > RL

RL

jX1

jX2

jX3

RL

Ri > RLRS < RL

The T-matching network is the dual of the Π network.

The T network can also be decomposed into a cascade of two back-to-front L
networks. The first L transforms the resistance up to some intermediate value
Ri > RS , and the second L transforms the resistance back down to RS . Thus the
net Q is higher than a single stage match.

The network Q can be derived in an analogous fashion and yields the same
solution

Q = 1
2

(√
Ri

RL
− 1 +

√
Ri

RS
− 1

)
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Multi-Section Low Q Matching

RS > RL

RL

L1

C1

L2

C2
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We have seen that the Π and T matching networks are essentially two stage
networks which can boost the network Q. In many applications we actually would
like to achieve the opposite effect, e.g. low network Q is desirable in broadband
applications.

Furthermore, a low Q design is less susceptible to process variations. Also, a lower
Q network lowers the loss of the network (see IL equation).
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Lower Q Networks
To lower the Q of an L matching network, we can employ more than one stage to
change the impedance in smaller steps. Recall that Q =

√
m − 1, and a large m

factor requires a high Q match.

If we simply change the impedance by a factor k < m, the Q of the first L section
is reduced. Likewise, a second L section will further change the resistance to the
desired RS with a step size l < m, where l · k = m.

Reflecting all impedances to the center of the network, the real part of the
impedance looking left or right is Ri at resonance. Thus the power dissipation is
equal for both networks. The overall Q is thus given by

Q =
ω(Ws1 +Ws2)

Pd1 + Pd2
=

ωWs1

2Pd
+

ωWs2

2Pd
=

Q1 + Q2

2

Q = 1
2

(√
Ri

RL
− 1 +

√
RS

Ri
− 1

)
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Optimally Low Q

Note the difference between the above and Eq. 32. The Ri term appears once in
the denominator and once in the numerator since it’s an intermediate value.
What’s the lowest Q achievable? To find out, take the derivative with respect to
Ri and solve for the minimum

Ri ,opt =
√

RLRS

which results in a Q approximately lower by a square root factor

Qopt =

√√√√
√

RS

RL
− 1 ≈ m1/4

It’s clear that the above equations apply to the opposite case when RL > RS by
simply interchanging the role of the source and the load.
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Multi-Section L
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To even achieve a lower Q, we can keep adding sections. The optimally low Q
value is obtained when the intermediate impedances are stepped in geometric
progression

Ri1

Rlo
=

Ri2

Ri1
=

Ri3

Ri2
= · · · = Rhi

Rin
= 1 + Q2

where Rhi = max(RS ,RL) and Rlo = min(RS ,RL). In the limit that n → ∞, we
take very small “baby” steps from Rlo to Rhi and the circuit starts to look like a
tapered transmission line.
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Baby Steps

Multiplying each term in the above equation

Ri1

Rlo
· Ri2

Ri1
· Ri3

Ri2
· · · · · Rhi

Rin
=

Rhi

Rlo
= (1 + Q2)N

which results in the optimally Q factor for the overall network

Q =

√(
Rhi

Rlo

)1/N

− 1

The loss in the optimal multi-section line can be calculated as follows. Using the
same approach as before, note that the total power dissipated in the matching
network is given by

Pdiss =
NQPL

Qu

where N section are used, each with equal Q.
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IL of a Multi-Section Match

This leads to the following expression

IL =
1

1 + N Q
Qu

or

IL =
1

1 + N
Qu

√(
Rhi
Rlo

)1/N
− 1

It’s interesting to observe that this expression has an optimum for a particular
value of N. It’s easy enough to plot IL for a few values of N to determine the
optimal number of sections. Intuitively adding sections can decrease the insertion
loss since it also lowers the network Q factor. Adding too many sections, though,
can counterbalance this benefit.
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PA Example

Suppose a power amplifier delivering 100 W of power has an optimal load
resistance of .5Ω, but needs to drive a 50Ω antenna. Design a matching network
assuming that the component Q’s of 30 are available.

First note that a matching factor of m = 50/.5 = 100 is needed. The table below
shows the network Q and insertion loss as a function of the number of sections N.
Clearly three sections yields the optimal solution. But since a three section filter is
more expensive, and has only marginally better performance, a two section
matching network may be preferable.

N Q IL (dB)

1 9.95 −1.24
2 3 −0.79
3 1.91 −0.76

N Q IL (dB)

4 1.47 −0.78
5 1.23 −0.81
6 1.07 −0.85
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Multi-Stage Match: Exact Derivation

L1

C1

L2

C2Ci

Li

Cn

Ln

P in,P in,P in,N

RL

12RS

The power into each stage can be written in the following form

Pin,1 = PL + Pdiss,1 =

(
1 +

Q1

Qu1

)
PL

where Q1 is the quality factor of the first stage matching network (form the load
side), and Qu1 is the qualify factor of the components in the first stage matching
network

1

Qu1
=

1

Qc1
+

1

QL1
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Loss at the Nth Stage

For the second stage, we can say that

Pin,2 = Pin,1 + Pdiss,2 =

(
1 +

Q2

Qu2

)
Pin,1

=

(
1 +

Q1

Qu1

)(
1 +

Q2

Qu2

)
PL

And so for the Nth stage, we have

Pin,N =

(
1 +

Q1

Qu1

)(
1 +

Q2

Qu2

)
· · ·
(
1 +

QN

QuN

)
PL

IL =
PL

Pin,N
=

1(
1 + Q1

Qu1

)(
1 + Q2

Qu2

)
· · ·
(
1 + QN

QuN

)
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Insertion Loss for Optimal Case

If Q1 = Q2 = · · ·QN , and also all components have the same Q,
Qu1 = Qu2 = · · · = Qu, we have1

IL =
1

(
1 + Q

Qu

)N

If Q/Qu ≪ 1, then we have the following approximate expression

IL =
1

1 + N Q
Qu

1Derivation courtesy of Hossein Shirinabadi (a former 142 student and group member).
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