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Series RLC Circuis
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The RLC circuit shown is deceptively simple. The impedance seen by the source
is simply given by

Z = jωL+
1

jωC
+ R = R + jωL

(
1− 1

ω2LC

)
The impedance is purely real at at the resonant frequency when ℑ(Z ) = 0, or
ω = ± 1√

LC
. At resonance the impedance takes on a minimal value.
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Series Resonance
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It’s worthwhile to investigate the cause of resonance, or the cancellation of the
reactive components due to the inductor and capacitor. Since the inductor and
capacitor voltages are always 180◦ out of phase, and one reactance is dropping
while the other is increasing, there is clearly always a frequency when the
magnitudes are equal.

Resonance occurs when ωL = 1
ωC .
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Quality Factor

So what’s the magic about this circuit? The first observation is that at resonance,
the voltage across the reactances can be larger, in fact much larger, than the
voltage across the resistors R. In other words, this circuit has voltage gain. Of
course it does not have power gain, for it is a passive circuit. The voltage across
the inductor is given by

vL = jω0Li = jω0L
vs

Z (jω0)
= jω0L

vs
R

= jQ × vs

where we have defined a circuit Q factor at resonance as

Q =
ω0L

R
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Voltage Multiplication

It’s easy to show that the same voltage multiplication occurs across the capacitor
(the reactances are equal at resonance after all)

vC =
1

jω0C
i =

1

jω0C

vs
Z (jω0)

=
1

jω0RC

vs
R

= −jQ × vs

This voltage multiplication property is the key feature of the circuit that allows it
to be used as an impedance transformer.

It’s important to distinguish this Q factor from the intrinsic Q of the inductor and
capacitor. For now, we assume the inductor and capacitor are ideal.
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More of Q

We can re-write the Q factor in several equivalent forms owing to the equality of
the reactances at resonance

Q =
ω0L

R
=

1

ω0C

1

R
=

√
LC

C

1

R
=

√
L

C

1

R
=

Z0

R

where we have defined the Z0 =
√

L
C as the characteristic impedance of the

circuit.
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Circuit Transfer Function

Let’s now examine the transfer function of the circuit

H(jω) =
vo
vs

=
R

jωL+ 1
jωC + R

H(jω) =
jωRC

1− ω2LC + jωRC

Obviously, the circuit cannot conduct DC current, so there is a zero in the transfer
function. The denominator is a quadratic polynomial. It’s worthwhile to put it
into a standard form that quickly reveals important circuit parameters

H(jω) =
jωR

L
1
LC + (jω)2 + jωR

L
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Canonical Form
Using the definition of Q and ω0 for the circuit

H(jω) =
jω ω0

Q

ω2
0 + (jω)2 + j ωω0

Q

Factoring the denominator with the assumption that Q > 1
2 gives us the complex

poles of the circuit

s± = − ω0

2Q
± jω0

√
1− 1

4Q2

The poles have a constant magnitude equal to the resonant frequency

|s| =

√√√√ ω2
0

4Q2

/
+ ω2

0

(
1− 1

4Q2

/)
= ω0
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Root Locus
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A root-locus plot of the poles as a function of Q. As Q → ∞, the poles move to
the imaginary axis. In fact, the real part of the poles is inversely related to the Q
factor.
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Circuit Bandwidth
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As we plot the magnitude of the transfer function, we see that the selectivity of
the circuit is also related inversely to the Q factor.
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Selectivity

In the limit that Q → ∞, the circuit is infinitely selective and only allows signals
at resonance ω0 to travel to the load.

Note that the peak gain in the circuit is always unity, regardless of Q, since at
resonance the L and C together disappear and effectively all the source voltage
appears across the load.

The selectivity of the circuit lends itself well to filter applications. To characterize
the peakiness, let’s compute the frequency when the magnitude squared of the
transfer function drops by half

|H(jω)|2 =

(
ω ω0

Q

)2
(
ω2
0 − ω2

)2
+
(
ω ω0

Q

)2 =
1

2
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Selectivity Bandwidth

This happens when (
ω2
0 − ω2

ω0ω/Q

)2

= 1

Solving the above equation yields four solutions, corresponding to two positive
and two negative frequencies. The peakiness is characterized by the difference
between these frequencies, or the bandwidth, given by

∆ω = ω+ − ω− =
ω0

Q
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Selectivity Bandwidth (cont)

The normalized bandwidth is inversely proportional to the circuit Q.

∆ω

ω0
=

1

Q

You can also show that the resonance frequency is the geometric mean frequency
of the 3 dB frequencies

ω0 =
√
ω+ω−
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Parallel RLC Circuits
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Parallel RLC

Y

L RCi s
i o

The parallel RLC circuit is the dual of the series circuit. By “dual” we mean that
the role of voltage and currents are interchanged.

Hence the circuit is most naturally probed with a current source is . In other
words, the circuit has current gain as opposed to voltage gain, and the admittance
minimizes at resonance as opposed to the impedance.
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Duality

The role of capacitance and inductance are also interchanged. In principle,
therefore, we don’t have to repeat all the detailed calculations we just performed
for the series case, but in practice it’s a worthwhile exercise.

The admittance of the circuit is given by

Y = jωC +
1

jωL
+ G = G + jωC

(
1− 1

ω2LC

)
which has the same form as before. The resonant frequency also occurs when
ℑ(Y ) = 0, or when ω = ω0 = ± 1√

LC
.
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Duality (cont)

Likewise, at resonance the admittance takes on a minimal value. Equivalently, the
impedance at resonance is maximum.

This property makes the parallel RLC circuit an important element in tuned
amplifier loads. It’s also easy to show that at resonance the circuit has a current
gain of Q

iC = jω0Cvo = jω0C
is

Y (jω0)
= jω0C

is
G

= jQ × is

where we have defined the circuit Q factor at resonance by

Q =
ω0C

G
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Current Multiplication

RL

is
iL iC

iL = −iC

iL =
isRL

jω0L

+
isRL

−

The current gain through the inductor is also easily derived

iL = −jQ × is

The equivalent expressions for the circuit Q factor are given by the inverse of the
previous relations

Q =
ω0C

G
=

R

ω0L
=

R
1√
LC

L
=

R√
L
C

=
R

Z0
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Phase Response

The phase response of a resonant circuit is also related to the Q factor. For the
parallel RLC circuit the phase of the admittance is given by

∠Y (jω) = tan−1

(
ωC

(
1− 1

ω2LC

)
G

)

The rate of change of phase at resonance is given by

d∠Y (jω)

dω

∣∣∣∣
ω0

=
2Q

ω0
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Phase Response
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A plot of the admittance phase as a function of frequency and Q is shown. Higher
Q circuits go through a more rapid transition.
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Circuit Transfer Function

Given the duality of the series and parallel RLC circuits, it’s easy to deduce the
behavior of the circuit. Whereas the series RLC circuit acted as a filter and was
only sensitive to voltages near resonance ω0, likewise the parallel RLC circuit is
only sensitive to currents near resonance

H(jω) =
io
is

=
voG

voY (jω)
=

G

jωC + 1
jωL + G

which can be put into the same canonical form as before

H(jω) =
jω ω0

Q

ω2
0 + (jω)2 + j ωω0

Q
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Circuit Transfer Function (cont)

We have appropriately re-defined the circuit Q to correspond the parallel RLC
circuit. Notice that the impedance of the circuit takes on the same form

Z (jω) =
1

Y (jω)
=

1

jωC + 1
jωL + G

which can be simplified to

Z (jω) =
j ω
ω0

1
GQ

1 +
(
jω
ω0

)2
+ j ω

ω0Q
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Parallel Resonance

At resonance, the real terms in the denominator cancel

Z (jω0) =
j RQ

1 +

(
jω0

ω0

)2

︸ ︷︷ ︸
=0

+j 1
Q

= R

It’s not hard to see that this circuit has the same half power bandwidth as the
series RLC circuit, since the denominator has the same functional form

∆ω

ω0
=

1

Q

plot of this impedance versus frequency has the same form as before multiplied by
the resistance R.
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LC Tank Frequency Limit

What’s the highest resonance frequency we can achieve with a “lumped”
component LC tank?

Can we make C and L arbitrarily small?

Clearly, to make C small, we just move the plates apart and use smaller plates.
But what about L?
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Small Capacitor → Bigger Inductor

“inductor”
“inductor”

As shown above, the smallest “inductor” has zero turns, or it’s just straight wire
connected to the capacitor.

Since inductance is defined for a loop, the capacitor is actually now part of the
inductor and defines the inductance of the circuit.

To make the inductance smaller requires that we increase the capacitor (bring
plates closer).
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Feynman’s Can

Given a fixed plate spacing and size, we can also be clever and keep adding
inductors in parallel to reduce the inductance.

In the limit, we end up with a “can”!

High frequency resonators are built this way from the outset, rather than from
lumped components.
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Shorted Line Impedance
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Recall the behavior of a shorted line when its length is a quarter wavelength

Notice that the line is exactly λ/4 at a particular frequency. If we change the
frequency, the line becomes either inductive or capacitive

Also, if the line has loss, we might expect that the line cannot be a true open
circuit, but a high impedance.
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Lossy Transmission Line Impedance

Using the same methods to calculate the impedance for the low-loss line, we
arrive at the following line voltage/current

v(z) = v+e−γz(1 + ρLe
2γz) = v+e−γz(1 + ρL(z))

i(z) =
v+

Z0
e−γz(1− ρL(z))

Where ρL(z) is the complex reflection coefficient at position z and the load
reflection coefficient is unaltered from before

The input impedance is therefore

Zin(z) = Z0
e−γz + ρLe

γz

e−γz − ρLeγz
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Lossy T-Line Impedance (cont)

Substituting the value of ρL we arrive at a similar equation (now a hyperbolic
tangent)

Zin(−ℓ) = Z0
ZL + Z0 tanh(γℓ)

Z0 + ZL tanh(γℓ)

For a short line, if γδℓ ≪ 1, we may safely assume that

Zin(−δℓ) = Z0 tanh(γδℓ) ≈ Z0γδℓ

Recall that Z0γ =
√

Z ′/Y ′
√
Z ′Y ′

As expected, input impedance is therefore the series impedance of the line (where
R = R ′δℓ and L = L′δℓ)

Zin(−δℓ) = Z ′δℓ = R + jωL
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Review of Resonance (I)

We’d like to find the impedance of a series resonator near resonance
Z (ω) = jωL+ 1

jωC + R

Recall the definition of the circuit Q

Q = ω0
time average energy stored

energy lost per cycle

For a series resonator, Q = ω0L/R. For a small frequency shift from resonance
δω ≪ ω0

Z (ω0 + δω) = jω0L+ jδωL+
1

jω0C

(
1

1 + δω
ω0

)
+ R
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Review of Resonance (II)

Which can be simplified using the fact that ω0L = 1
ω0C

Z (ω0 + δω) = j2δωL+ R

Using the definition of Q

Z (ω0 + δω) = R

(
1 + j2Q

δω

ω0

)

For a parallel line, the same formula applies to the admittance

Y (ω0 + δω) = G

(
1 + j2Q

δω

ω0

)

Where Q = ω0C/G
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λ/2 T-Line Resonators (Series)

A shorted transmission line of length ℓ has input impedance of Zin = Z0 tanh(γℓ)

For a low-loss line, Z0 is almost real

Expanding the tanh term into real and imaginary parts

tanh(αℓ+ jβℓ) =
sinh(2αℓ)

cos(2βℓ) + cosh(2αℓ)
+

j sin(2βℓ)

cos(2βℓ) + cosh(2αℓ)

Since λ0f0 = c and ℓ = λ0/2 (near the resonant frequency), we have
βℓ = 2πℓ/λ = 2πℓf /c = π + 2πδf ℓ/c = π + πδω/ω0

If the lines are low loss, then αℓ ≪ 1
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λ/2 Series Resonance

Simplifying the above relation we come to

Zin = Z0

(
αℓ+ j

πδω

ω0

)

The above form for the input impedance of the series resonant T-line has the
same form as that of the series LRC circuit

We can define equivalent elements

Req = Z0αℓ = Z0αλ/2

Leq =
πZ0

2ω0
Ceq =

2

Z0πω0
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λ/2 Series Resonance Q

The equivalent Q factor is given by

Q =
1

ω0ReqCeq
=

π

αλ0
=

β0
2α

For a low-loss line, this Q factor can be made very large. A good T-line might
have a Q of 1000 or 10,000 or more

It’s difficult to build a lumped circuit resonator with such a high Q factor
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λ/4 T-Line Resonators (Parallel)

For a short-circuited λ/4 line

Zin = Z0 tanh(α+ jβ)ℓ = Z0
tanhαℓ+ j tanβℓ

1 + j tanβℓ tanhαℓ

Multiply numerator and denominator by −j cotβℓ

Zin = Z0
1− j tanhαℓ cotβℓ

tanhαℓ− j cotβℓ

For ℓ = λ/4 at ω = ω0 and ω = ω0 + δω

βℓ =
ω0ℓ

v
+

δωℓ

v
=

π

2
+

πδω

2ω0
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λ/4 T-Line Resonators (Parallel)

So cotβℓ = − tan πδω
2ω0

≈ −πδω
2ω0

and tanhαℓ ≈ αℓ

Zin = Z0
1 + jαℓπδω/2ω0

αℓ+ jπδω/2ω0
≈ Z0

αℓ+ jπδω/2ω0

This has the same form for a parallel resonant RLC circuit

Zin =
1

1/R + 2jδωC

The equivalent circuit elements are

Req =
Z0

αℓ
Ceq =

π

4ω0Z0
Leq =

1

ω2
0Ceq
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λ/4 T-Line Resonators Q Factor

The quality factor is thus

Q = ω0RC =
π

4αℓ
=

β

2α
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Crystal Resonator

C0

L1 C1 R1

R2

R3

L2 C2

L3 C3t

quartz

Quartz crystal is a piezoelectric material. An electric field causes a mechanical
displacement and vice versa. Thus it is a electromechanical transducer.

The equivalent circuit contains series LCR circuits that represent resonant modes
of the XTAL. The capacitor C0 is a physical capacitor that results from the
parallel plate capacitance due to the leads.
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Fundamental Resonant Mode

Acoustic waves through the crystal have phase velocity v = 3× 103m/s. For a
thickness t = 1mm, the delay time through the XTAL is given by
τ = t/v = (10−3m)/(3× 103m/s) = 1/3µs.

This corresponds to a fundamental resonant frequency
f0 = 1/τ = v/t = 3MHz = 1

2π
√
L1C1

.

The quality factor is extremely high, with Q ∼ 3× 106 (in vacuum) and about
Q = 1× 106 (air). This is much higher than can be acheived with electrical
circuit elements (inductors, capacitors, transmission lines, etc). This high Q factor
leads to good frequency stability (low phase noise).
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MEMS Resonators

The highest frequency, though, is limited by the thickness of the material. For
t ≈ 15µm, the frequency is about 200MHz. MEMS resonators have been
demonstrated up to ∼ GHz frequencies. MEMS resonators are an active research
area.

Integrated MEMS resonators are fabricated from polysilicon beams (forks), disks,
and other mechanical structures. These resonators are electrostatically induced
structures.
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Example XTAL

C0

L1

C1

R1

Some typical numbers for a
fundamental mode resonator are
C0 = 3pF, L1 = 0.25H, C1 = 40fF,
R1 = 50Ω, and f0 = 1.6MHz. Note
that the values of L1 and C1 are
modeling parameters and not physical
inductance/capacitance. The value of
L is large in order to reflect the high
quality factor.

The quality factor is given by

Q =
ωL1
R1

= 50× 103 =
1

ωR1C1

41 / 42



Series and Parallel Mode

C0

L1 C1 R1

C0

L1 R1

low resistance high resistance

Due to the external physical capacitor, there are two resonant modes between a
series branch and the capacitor. In the series mode ωs , the LCR is a low
impedance (“short”). But beyond this frequency, the LCR is an equivalent
inductor that resonates with the external capacitance to produce a parallel
resonant circuit at frequency ωp > ωs .
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