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The Smith Chart

The Smith Chart is simply a graphical calculator for computing impedance as a
function of reflection coefficient z = f(p)

More importantly, many problems can be easily visualized with the Smith Chart
This visualization leads to a insight about the behavior of transmission lines

All the knowledge is coherently and compactly represented by the Smith Chart
Why else study the Smith Chart? It's beautiful!

Aside: There are deep mathematical connections in the Smith Chart. It's the tip
of the iceberg! Study complex analysis to learn more.
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Generalized Reflection Coefficient

@ We have found that in sinusoidal steady-state, the voltage on the line is a T-line
v(z) =vT(2) + v (z) = V(e " + pLe’?)

@ Recall that we can define the reflection coefficient anywhere by taking the ratio of
the reflected wave to the forward wave
_vi(z)  pLe’

_ — — 2yz
p(Z) V+(Z) ez PLE

@ Therefore the impedance on the line ...

vie %(1 + pe®?)

%e—w(l — pLe®1?)

Z(z) =
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Normalized Impedance

@ ...can be expressed in terms of p(z)

1+ p(2)
1—p(2)

@ It is extremely fruitful to work with normalized impedance values z = Z/ 2,

Z(Z) = Zo

2(2) 1+ 0(2)
2y 1—p(2)

@ Let the normalized impedance be written as z = r + jx (note small case)

z(z) =

@ The reflection coefficient is “normalized” by default since for passive loads
lp| < 1. Let p=u+jv
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Dissection of the Transformation

e Now simply equate the real (R) and imaginary (&) components in the above

equaiton
rtjx = (1—|—u)+J:v _ 1+ u+jv)(1—u+jv)
(1 —u)—jv (I—u)?+v?

@ To obtain the relationship between the (r, x) plane and the (u, v) plane

1—u?— 2

r:(l—u)2—|—v2

vl = u)+v(1+u)
= (1—u)?+4v?

@ The above equations can be simplified and put into a nice form
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Completing Your Squares...

@ If you remember your high school algebra, you can derive the following equivalent
equations

(o)
(u—1)2+<v—)1<>2:1

@ These are circles in the (u, v) plane! Circles are good!

@ We see that vertical and horizontal lines in the (r, x) plane (complex impedance
plane) are transformed to circles in the (u, v) plane (complex reflection coefficient)
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Resistance Transformations

r =0 maps to u? + v? = 1 (unit circle)

r =1 maps to (u—1/2)% + v2 = (1/2)? (matched real part)

r =.5 maps to (u—1/3)2 + v? = (2/3)? (load R less than Zp)

r =2 maps to (u—2/3)?+ v2 = (1/3)? (load R greater than Zp)
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Reactance Transformations

@ x = £2 maps to

1)? + (v ¥1/2)* = (1/2)?

@ x = +1/2 maps to
(u—12+(vF2)2 =22

@ Inductive reactance maps to upper
half of unit circle

x = 1 maps to
(u—12+(v¥F1)2=1
(u—

u

o Capacitive reactance maps to lower
half of unit circle
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Complete Smith Chart

short !

capéEMve
Ao
7y
+
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Reading the Smith Chart
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Reading the Smith Chart

@ First map z; on the Smith Chart as p;
@ To read off the impedance on the T-line at any point on a lossless line, simply
move on a circle of constant radius since

plz) = pre¥’
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Motion Towards Generator

@ Moving towards generator means p(—/) = p e~%P%, or clockwise motion

@ We're back to where we started when 280 = 2m, or £ = \/2

@ Thus the impedance is periodic (as we know)

@ Aside: For a lossy line, this corresponds to a spiral motion and so the Smith Chart

is more useful for low-loss lines
13/38



SWR Circle

@ Since SWR is a function of |p|, a circle
at origin in (u, v) plane is called an
SWR circle

@ Recall the voltage max occurs when
the reflected wave is in phase with the
forward wave, so p(zmin) = |pL|

enera[o,

@ This corresponds to the intersection of
the SWR circle with the positive real
axis (read off SWR by just reading the
value of r)

@ Likewise, the intersection with the
negative real axis is the location of the
voltage min
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Example of Smith Chart Visualization

@ Prove that if Z; has an inductance reactance, then the position of the first voltage
maximum occurs before the voltage minimum as we move towards the generator

@ Proof: On the Smith Chart start at any point in the upper half of the unit circle.
Moving towards the generator corresponds to clockwise motion on a circle.
Therefore we will always cross the positive real axis first and then the negative
real axis.
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Admittance Chart

@ Sincey=1/z= %, you can
imagine that an Admittance

Smith Chart looks very similar

@ In fact everything is switched
around a bit and you can
construct a combined
admittance/impedance Smith
Chart. You can also use an
impedance chart for admittance
if you simply map x — b and
r—g
@ Be careful ... the caps are now on the top of the chart and the inductors on the
bottom

@ The short and open likewise swap positions
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Admittance on Smith Chart

@ Sometimes you may need to work with both impedances and admittances.

@ This is not easy on the Smith Chart and requires proficient use of the impedance
inversion property of a A/4 line (it actually can get pretty confusing)

Z2
Z/ — 0
Z
o If we normalize Z’ we get y
7 7 1
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Admittance Conversion

@ Thus if we simply
rotate m degrees on
the Smith Chart
and read off the
impedance, we're
actually reading off
the admittance!

o Rotating 7 degrees
is easy. Simply
draw a line through
origin and z; and
read off the second
point of intersection
on the SWR circle
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you can read off both y and z. You can also easily visualize

@ On a combined chart
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and draw motions along constant r, g, x, and b circles all on the same chart.



Example Calculation
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Example Calculation
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Example Problem

Zs Z

Vo (~ Z

z=.—d z=.0

© Consider the transmission line circuit shown below. A voltage source generating
10V amplitude of sinewave at 10 GHz is driving a transmission line terminated
with load Z; = 80 - j40 ohm. The transmission line has a characteristic impedance
of Zy (= 10012), effective dielectric constant of 4, and length d =22.5 mm.
@ Find the reflection coefficient at the load (z = 0) and at the source (z = —d). |
Note this is 1.5) |
@® Find the input impedance at the source (z = -d) and at z = 18.75 mm. [Note this is
1.25) ]
© Plot the magnitude of the voltage along the line. Find voltage maximum, voltage

minimum, and standing wave ratio. 22 /38
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Impedance Matching with Smith Chart
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@ Single stub impedance matching

is easy to do with the Smith Chart

@ Simply find the intersection of the

1 circle

SWR circle with the r
@ The match is at the center of the

circle. Grab a reactance in series
or shunt to move you there!
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Series Sub Using Microstrip ?

Microstrip

@ Shunt stubs are easy but series stubs are not easy and require cuts in the ground
plane.
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Shunt Stub Match

Let’s now solve the same matching
problem with a shunt stub.

@ To find the shunt stub value, simply
convert the value of z=1+ jx to
; 3 y = 1+ jb and use the Smith chart as an
...::'42.:”, 5 NN Admittance chart.

%

CRERRs S

O XX

I LESES
SIS

@ Find the distance to move on an SWR
circle to reach the 1 + jb circle (same as
1 + jx circle since we're using it as
Y-chart) and read off the distance in
wavelengths. To find the shunt stub
length, start at a short (open) and move
until you reach the desired susceptance.
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Lumped Components On Smith Chart

@ Adding an inductor in series
moves us on the constant r
circle clock-wise (CW).
Adding a capacitor in series
moves counter clock-wise
(CCW).

@ On the Y-plane, to go CW,
add a shunt C. To move
CCW, add a shunt L.
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Matching with Lumped Components (Inside)
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Suppose the load is inside the 1 + jx circle.
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Escaping from “Insdie”

g-circle

@ Notice that there are two paths to get to the center. The difference is one is AC

coupled versus DC coupled, so often the application will determine the choice.
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Matching with Lumped Components (Outside)
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Suppose the load is outside the 1 + jx circle.
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@ For designing matching networks, it's very convenient to know the required @ to
achieve a match (related to bandwidth and loss). Let’s find the contours of
constant @ on the Smith Chart. Recall that z = r + jx can be related to the
reflection coefficient p = u + jv by the following equations

1—u?— 2

r:(l—u)2+v2

v(1—u)+v(1+u)
(1—u)?+ v2

X =
So that the Q is given by:
X 2v
rol—u?2—v2

Q=
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Q Circles (cont)

@ We can write this as
Q(l—uv?— v =2v

1-—u?)=v>+2v/Q=v*+2v/Q+1/Q* - 1/Q?
1-1/Q*= v+ (v+1/Q)?

@ This is an equation for another circle, centered at (u,v) = (0,—-1/Q) with a

radius of R = \/l—i-é.

@ For a capacitive element, the same derivation holds except the circle is centered at

(u’ V) = (Oa +1/Q)
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Single Stage vs Two-Stage Matching Network

e Notice that with a one stage matching network, the Q is fixed (we already knew
this but now we see it graphically).

@ On the other hand, with a two-stage matching network we can actually take a
different path and lower the Q.
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Multi-Stage Matching Network

@ For broadband matching, “hug” the x-axis. At high frequency, we can also include
transmission line leads into the network.
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Constant Q Matching Network

@ Pick a desired Q (set by bandwidth), and then never allow the matching ratio to
go above this value. The number of steps required will be set by the matching

ratio.
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