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Scattering Matrix

Voltages and currents are difficult to measure directly at microwave freq. Z
matrix requires “opens”, and it’s hard to create an ideal open (parasitic
capacitance and radiation). Likewise, a Y matrix requires “shorts”, again ideal
shorts are impossible at high frequency due to the finite inductance.

Many active devices could oscillate under the open or short termination.

S parameters are easier to measure at high frequency. The measurement is direct
and only involves measurement of relative quantities (such as the SWR or the
location of the first minima relative to the load).
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Scattering parameters represent the flow of power into and out of ports of an
arbitrary N-port

It’s important to realize that although we associate S parameters with high
frequency and wave propagation, the concept is valid for any frequency.
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Power Flow in an One-Port
We begin with the simple observation that the power flow into a one-port circuit
can be written in the following form

Pin = Pavs − Pr

where Pavs is the available power from the source. Unless otherwise stated, let us
assume sinusoidal steady-state. If the source has a real resistance of Z0, this is
simply given by

Pavs =
V 2
s

8Z0

Of course if the one-port is conjugately matched to the source, then it will draw
the maximal available power from the source. Otherwise, the power Pin is always
less than Pavs , which is reflected in our equation. In general, Pr represents the
wasted or untapped power that one-port circuit is “reflecting” back to the source
due to a mismatch. For passive circuits it’s clear that each term in the equation is
positive and Pin ≥ 0.
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Power Absorbed by One-Port

The complex power absorbed by the one-port is given by

Pin =
1

2
(V1 · I ∗1 + V ∗

1 · I1)

which allows us to write

Pr = Pavs − Pin =
V 2
s

4Z0
− 1

2
(V1I

∗
1 + V ∗

1 I1)

the factor of 4 instead of 8 is used since we are now dealing with complex power.
The average power can be obtained by taking one half of the real component of
the complex power. If the one-port has an input impedance of Zin, then the power
Pin is expanded to

Pin =
1

2

(
Zin

Zin + Z0
Vs ·

V ∗
s

(Zin + Z0)∗
+

Z ∗
in

(Zin + Z0)∗
V ∗
s · Vs

(Zin + Z0)

)
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(cont.)

The previous equation is easily simplified to (where we have assumed Z0 is real)

Pin =
|Vs |2
2Z0

(
Z0Zin + Z ∗

inZ0

|Zin + Z0|2
)

With the exception of a factor of 2, the premultiplier is simply the source available
power, which means that our overall expression for the reflected power is given by

Pr =
V 2
s

4Z0

(
1− 2

Z0Zin + Z ∗
inZ0

|Zin + Z0|2
)

which can be simplified

Pr = Pavs

∣∣∣∣
Zin − Z0

Zin + Z0

∣∣∣∣
2

= Pavs |Γ|2
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Definition of Reflection Coefficient

Pr = Pavs

∣∣∣∣
Zin − Z0

Zin + Z0

∣∣∣∣
2

= Pavs |Γ|2

We have defined Γ, or the reflection coefficient, as

Γ =
Zin − Z0

Zin + Z0

From the definition it is clear that |Γ| ≤ 1, which is just a re-statement of the
conservation of energy implied by our assumption of a passive load.

This constant Γ, also called the scattering parameter of a one-port, plays a very
important role. On one hand we see that it is has a one-to-one relationship with
Zin.
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Scattering Parameter

Given Γ we can solve for Zin by inverting the above equation

Zin = Z0
1 + Γ

1− Γ

which means that all of the information in Zin is also in Γ. Moreover, since
|Γ| < 1, we see that the space of the semi-infinite space of all impedance values
with real positive components (the right-half plane) maps into the unit circle.
This is a great compression of information which allows us to visualize the entire
space of realizable impedance values by simply observing the unit circle. We shall
find wide application for this concept when finding the appropriate load/source
impedance for an amplifier to meet a given noise or gain specification.
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Scattering Parameter as Power Flow

More importantly, Γ expresses very direct and obviously the power flow in the
circuit. If Γ = 0, then the one-port is absorbing all the possible power available
from the source. If |Γ| = 1 then the one-port is not absorbing any power, but
rather “reflecting” the power back to the source. Clearly an open circuit, short
circuit, or a reactive load cannot absorb net power. For an open and short load,
this is obvious from the definition of Γ. For a reactive load, this is pretty clear if
we substitute Zin = jX

|ΓX | =
∣∣∣∣
jX − Z0

jX + Z0

∣∣∣∣ =

∣∣∣∣∣∣

√
X 2 + Z 2

0√
X 2 + Z 2

0

∣∣∣∣∣∣
= 1
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Relation between Z and Γ

The transformation between impedance and Γ is the well known Bilinear
Transform. It is a conformal mapping (meaning that it preserves angles) from
vertical and horizontal lines into circles. We have already seen that the jX axis is
mapped onto the unit circle.

Since |Γ|2 represents power flow, we may imagine that Γ should represent the flow
of voltage, current, or some linear combination thereof. Consider taking the
square root of the basic equation we have derived

√
Pr = Γ

√
Pavs

where we have retained the positive root. We may write the above equation as

b1 = Γa1

where a and b have the units of square root of power and represent signal flow in
the network. How are a and b related to currents and voltage?
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Definition of a and b
Let

a1 =
V1 + Z0I1

2
√
Z0

and

b1 =
V1 − Z0I1

2
√
Z0

It is now easy to show that for the one-port circuit, these relations indeed
represent the available and reflected power:

|a1|2 =
|V1|2
4Z0

+
Z0|I1|2

4
+

V ∗
1 · I1 + V1 · I ∗1

4

Now substitute V1 = ZinVs/(Zin + Z0) and I1 = Vs/(Zin + Z0) we have

|a1|2 =
|Vs |2
4Z0

|Zin|2
|Zin + Z0|2

+
Z0|Vs |2

4|Zin + Z0|2
+

|Vs |2
4Z0

Z ∗
inZ0 + ZinZ0

|Zin + Z0|2
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a/b and Power Flow

We have now shown that a1 is associated with the power available from the
source:

|a1|2 =
|Vs |2
4Z0

( |Zin|2 + Z 2
0 + Z ∗

inZ0 + ZinZ0

|Zin + Z0|2
)

=
|Vs |2
4Z0

( |Zin + Z0|2
|Zin + Z0|2

)
= Pavs

In a like manner, the square of b is given by many similar terms

|b1|2 =
|Vs |2
4Z0

( |Zin|2 + Z 2
0 − Z ∗

inZ0 − ZinZ0

|Zin + Z0|2
)

=

Pavs

∣∣∣∣
|Zin − Z0

Zin + Z0

∣∣∣∣
2

= Pavs |Γ|2

= |a1|2|Γ|2

as expected.
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One-Port Equation

We can now see that the expression b = Γ · a is analogous to the expression
V = Z · I or I = Y · V and so it can be generalized to an N-port circuit. In fact,
since a and b are linear combinations of v and i , there is a one-to-one relationship
between the two. Taking the sum and difference of a and b we arrive at

a1 + b1 =
2V1

2
√
Z0

=
V1√
Z0

which is related to the port voltage and

a1 − b1 =
2Z0I1

2
√
Z0

=
√
Z0I1

which is related to the port current.
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Incident and Scattered Waves
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Incident and Scattered Waves

Let’s define the vector v+ as the incident “forward” waves on each transmission
line connected to the N port. Define the reference plane as the point where the
transmission line terminates onto the N port.

The vector v− is then the reflected or “scattered” waveform at the location of the

port. v+ =




V+
1

V+
2

V+
3
...


 v− =




V−
1

V−
2

V−
3
...



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Scattering Waves (cont)

Because the N port is linear, we expect that scattered field to be a linear function
of the incident field

v− = Sv+

S is the scattering matrix

S =




S11 S12 · · ·
S21

. . .
...



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Relation to Voltages

The fact that the S matrix exists can be easily proved if we recall that the voltage
and current on each transmission line termination can be written as

Vi = V+
i + V−

i Ii = Y0(I
+
i − I−i )

Inverting these equations

Vi + Z0Ii = V+
i + V−

i + V+
i − V−

i = 2V+
i

Vi − Z0Ii = V+
i + V−

i − V+
i + V−

i = 2V−
i

Thus v+,v− are simply linear combinations of the port voltages and currents. By
the uniqueness theorem, then, v− = Sv+.
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Measure Sij
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The term Sij can be computed directly by the
following formula

Sij =
V−
i

V+
j

∣∣∣∣∣
V+
k =0∀ k ̸=j

In other words, to measure Sij , drive port j with a wave amplitude of V+
j and

terminate all other ports with the characteristic impedance of the lines (so that
V+
k = 0 for k ̸= j). Then observe the wave amplitude coming out of the port i
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Termination

It’s important to realize that our definition of scattering parameters is
independent of transmission lines and can be defined completely in terms of
voltage and currents.

So then why do we terminate the line? Because to make V+ = 0 we solve:

V+ =
1

2
(Vi + Z0Ii ) = 0

Solving this equation we find the conditions

Vi = −Z0Ii

or

ZL =
Vi

−Ii
= Z0

We see that there are no transmission lines to terminate, this rather follows from
the definition of scattering parameters.
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S Matrix for a 1-Port Capacitor

Note you can solve this problem with T-lines or by definition of the S matrix:

Z0 C

Let’s calculate the S parameter for a
capacitor

S11 =
V−
1

V+
1

This is of course just the reflection coefficient for a capacitor

S11 = ρL =
ZC − Z0

ZC + Z0
=

1
jωC − Z0

1
jωC + Z0

=
1− jωCZ0

1 + jωCZ0
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S Matrix for a 1-Port Cap (cont)

Let’s calculate the S parameter for a capacitor directly from the definition of S
parameters

C
S11 =

V−
1

V+
1

Substituting for the current in a capacitor

V−
1 = V − IZ0 = V − jωCV = V (1− jωCZ0)

V+
1 = V + IZ0 = V + jωCV = V (1 + jωCZ0)

We arrive at the same answer as expected

=
1− jωCZ0

1 + jωCZ0
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S Matrix for a 2-Port Shunt Element

Consider a shunt impedance connected at the junction of two transmission lines.
The voltage at the junction is of course continuous. The currents, though, differ

V1 = V2

I1 + I2 = YLV2

Z0 Z0ZL

To compute S11, enforce V+
2 = 0 by terminating the line. Thus we can be

re-write the above equations

V+
1 + V−

1 = V−
2

Y0(V
+
1 − V−

1 ) = Y0V
−
2 + YLV

−
2 = (YL + Y0)V

−
2
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Shunt Element (cont)

We can now solve the above eq. for the reflected and transmitted wave

V−
1 = V−

2 − V+
1 =

Y0

YL + Y0
(V+

1 − V−
1 )− V+

1

V−
1 (YL + Y0 + Y0) = (Y0 − (Y0 + YL))V

+
1

S11 =
V−
1

V+
1

=
Y0 − (Y0 + YL)

Y0 + (YL + Y0)
=

Z0||ZL − Z0

Z0||ZL + Z0

The above eq. can be written by inspection since Z0||ZL is the effective load seen
at the junction of port 1.

Thus for port 2 we can write

S22 =
Z0||ZL − Z0

Z0||ZL + Z0
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Shunt Element (cont)

Likewise, we can solve for the transmitted wave, or the wave scattered into port 2

S21 =
V−
2

V+
1

Since V−
2 = V+

1 + V−
1 , we have

S21 = 1 + S11 =
2Z0||ZL

Z0||ZL + Z0

By symmetry, we can deduce S12 as

S12 =
2Z0||ZL

Z0||ZL + Z0
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Conversion Formula

Since V+ and V− are related to V and I , it’s easy to find a formula to convert
for Z or Y to S

Vi = V+
i + V−

i → v = v+ + v−

Zi0Ii = V+
i − V−

i → Z0i = v+ − v−

Now starting with v = Zi , we have

v+ + v− = ZZ−1
0 (v+ − v−)

Note that Z0 is the scalar port impedance

v−(I + ZZ−1
0 ) = (ZZ−1

0 − I )v+

v− = (I + ZZ−1
0 )−1(ZZ−1

0 − I )v+ = Sv+
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Conversion (cont)
We now have a formula relating the Z matrix to the S matrix

S = (ZZ−1
0 + I )−1(ZZ−1

0 − I ) = (Z + Z0I )
−1(Z − Z0I )

Recall that the reflection coefficient for a load is given by the same equation!

ρ =
Z/Z0 − 1

Z/Z0 + 1

To solve for Z in terms of S , simply invert the relation

Z−1
0 ZS + IS = Z−1

0 Z − I

Z−1
0 Z (I − S) = S + I Z = Z0(I + S)(I − S)−1

As expected, these equations degenerate into the correct form for a 1× 1 system
Z11 = Z0

1+S11
1−S11
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Properties of S-Parameters
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Shift in Reference Planes

Note that if we move the reference planes, we can easily recalculate the S
parameters.

We’ll derive a new matrix S ′ related to S . Let’s call the waves at the new
reference ν

v− = Sv+

ν− = S ′ν+

Since the waves on the lossless transmission lines only experience a phase shift, we
have a phase shift of θi = βiℓi

ν−i = v−e−jθi

ν+i = v+e jθi
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Reference Plane (cont)

Or we have



e jθ1 0 · · ·
0 e jθ2 · · ·
0 0 e jθ3 · · ·
...


 ν− = S




e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...


 ν+

So we see that the new S matrix is simply

S ′ =




e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...


S




e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...



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Normalized S-Parameters

a1

a2b1

b2

[S]

Let’s introduce normalized voltage waves

a(x) =
v+(x)√

Z0
b(x) =

v−(x)√
Z0

So now |a|2 and |b|2 represent the power of the forward and reverse wave. Define
the scattering matrix as before

b = Sa

For a 2× 2 system, this is simply
[
b1
b2

]
=

[
S11 S12
S21 S22

] [
a1
a2

]
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Generalized Scattering Parameters

We can use different impedances Z0,n at each port and so we have the generalized
incident and reflected waves

an =
v+n√
Z0,n

bn =
v−n√
Z0,n

The scattering parameters are now given by

Sij =
bi
aj

∣∣∣∣
ak ̸=j=0

Sij =
V−
i

V+
j

√
Z0,j√
Z0,i

∣∣∣∣∣
V+
k ̸=j=0

Consider the current and voltage in terms of a and b

Vn = v+n + v−n =
√

Z0,n(an + bn)

In =
1

Z0,n

(
v−n − v−n

)
=

1√
Z0,n

(an − bn)
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(cont)

The power flowing into this port is given by
1

2
ℜ (VnI

∗
n ) =

1

2
ℜ
(
|an|2 − |bn|2 + (bna

∗
n − b∗nan)

)
=

1

2

(
|an|2 − |bn|2

)
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Scattering Transfer Parameters

a1

a2

b1

b2

[T]

a3

b3

a4

b4

[T]

Up to now we found it convenient to represent the scattered waves in terms of the
incident waves. But what if we wish to cascade two ports as shown?

Since b2 flows into a′1, and likewise b′1 flows into a2, would it not be convenient if
we defined the a relationship between a1,b1 and b2,a2?

In other words we have [
a1
b1

]
=

[
T11 T12

T21 T22

] [
b2
a2

]

Notice carefully the order of waves (a,b) in reference to the figure above. This
allows us to cascade matrices[

a1
b1

]
= T1

[
b2
a2

]
= T1

[
a3
b3

]
= T1T2

[
b4
a4

]
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Reciprocal Networks
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Reciprocal Networks
Suppose the Z/Y matrix are symmetric. Now let’s see what we can infer about
the S matrix.

v+ =
1

2
(v + Z0i)

v− =
1

2
(v − Z0i)

Substitute v = Zi in the above equations

v+ =
1

2
(Zi + Z0i) =

1

2
(Z + Z0)i

v− =
1

2
(Zi − Z0i) =

1

2
(Z − Z0)i

Since i = i , the above eq. must result in consistent values of i . Or

2(Z + Z0)
−1v+ = 2(Z − Z0)

−1v−
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Reciprocal Networks (cont)

From the above, we have

S = (Z − Z0)(Z + Z0)
−1

Consider the transpose of the S matrix

S t =
(
(Z + Z0)

−1
)t

(Z − Z0)
t

Recall that Z0 is a diagonal matrix

S t = (Z t + Z0)
−1(Z t − Z0)

If Z t = Z (reciprocal network), then we have

S t = (Z + Z0)
−1(Z − Z0)
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(cont)

Previously we found that

S = (Z + Z0)
−1(Z − Z0)

So that we see that the S matrix is also symmetric (under reciprocity)S t = S
Note that in effect we have shown that

(Z + I )−1(Z − I ) = (Z − I )(Z + I )−1

This is easy to demonstrate if we note that

Z 2 − I = Z 2 − I 2 = (Z + I )(Z − I ) = (Z − I )(Z + I )

In general matrix multiplication does not commute, but here it does

(Z − I ) = (Z + I )(Z − I )(Z + I )−1 (Z + I )−1(Z − I ) = (Z − I )(Z + I )−1

Thus we see that S t = S .
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S-Parameters of a Lossless Network

Consider the total power dissipated by a network (must sum to zero)

Pav =
1

2
ℜ
(
v t i∗

)
= 0

Expanding in terms of the wave amplitudes

=
1

2
ℜ
(
(v+ + v−)tZ−1

0 (v+ − v−)∗
)

Where we assume that Z0 are real numbers and equal. The notation is about to
get ugly

=
1

2Z0
ℜ
(
v+

t
v+

∗ − v+
t
v−

∗
+ v−

t
v+

∗ − v−
t
v−

∗
)
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Lossless (cont)

Notice that the middle terms sum to a purely imaginary number. Let x = v+ and
y = v−

y tx∗ − x ty∗ = y1x
∗
1 + y2x

∗
2 + · · · − x1y

∗
1 + x2y

∗
2 + · · · = a− a∗

We have shown that

Pav =
1

2Z0


 v+

t
v+︸ ︷︷ ︸

total incident power

− v−
t
v−

∗
︸ ︷︷ ︸

total reflected power


 = 0
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(cont)

This is a rather obvious result. It simply says that the incident power is equal to
the reflected power (because the N port is lossless). Since v− = Sv+

v+
t
v+

∗
= (Sv+)t(Sv+)∗ = v+

t
S tS∗v+

∗

This can only be true if S is a unitary matrix

S tS∗ = I

S∗ = (S t)−1
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Orthogonal Properties of S

Expanding out the matrix product

δij =
∑

k

(S t)ikS
∗
kj =

∑

k

SkiS
∗
kj

For i = j we have ∑

k

SkiS
∗
ki = 1

For i ̸= j we have ∑

k

SkiS
∗
kj = 0

The dot product of any column of S with the conjugate of that column is unity
while the dot product of any column with the conjugate of a different column is
zero. If the network is reciprocal, then S t = S and the same applies to the rows of
S .
Note also that |Sij | ≤ 1.
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S-Parameter Representation of a Source
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Representation of Source

VS

+

Vi

−

ZS IS

Vi = Vs − IsZs

The voltage source can be represented directly for s-parameter analysis as follows.
First note that

V+
i + V−

i = Vs +

(
V+
i

Z0
− V−

i

Z0

)
Zs

Solve these equations for V−
i , the power flowing away from the source

V−
i = V+

i

Zs − Z0

Zs + Z0
+

Z0

Z0 + Zs
Vs

Dividing each term by
√
Z0, we have

V−
i√
Z0

=
V+
i√
Z0

Γs +

√
Z0

Z0 + Zs
Vs bi = aiΓs + bs bs = Vs

√
Z0/(Z0+Zs)
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Available Power from Source

A useful quantity is the available power from a source under conjugate matched
conditions. Since

Pavs = |bi |2 − |ai |2

If we let ΓL = Γ∗S , then using ai = ΓLbi , we have

bi = bs + aiΓS = bs + Γ∗SbiΓS

Solving for bi we have

bi =
bs

1− |ΓS |2

So the Pavs is given by

Pavs = |bi |2 − |ai |2 = |bs |2
(

1− |ΓS |2
(1− |ΓS |2)2

)

=
|bs |2

1− |ΓS |2 45 / 81



Signal Flow Analysis
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Signal-Flow Analysis

a1

a2b1

b2

S11 S22

S12

S21

Each signal a and b in the system is represented by a node. Branches connect
nodes with “strength” given by the scattering parameter. For example, a general
two-port is represented above.

Using three simple rules, we can simplify signal flow graphs to the point that
detailed calculations are done by inspection. Of course we can always “do the
math” using algebra, so pick the technique that you like best.
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Series and Parallel Rules

a1 a2

SBSA

a3 a1

SBSA

a3

Rule 1: (series rule) By inspection, we have the cascade.

a1 a2

SB

SA

a1 a2

SA + SB

Rule 2: (parallel rule) Clear by inspection.
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Self-Loop Rule

a1 a2

SCSA

a3

SB

a1 a2

SC

a3

SA

1 − SB

Rule 3: (self-loop rule) We can remove a “self-loop” by multiplying branches
feeding the node by 1/(1− SB) since

a2 = SAa1 + SBa2

a2(1− SB) = SAa1

a2 =
SA

1− SB
a1
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Splitting Rule

a1

a2
SB

SA
a3

a4

SC

a1 a2

SB

SA

a3

a4
SC

SA

a′
2

We can duplicate node a2 by splitting the signals at an earlier phase
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Example: Signal Flow Analysis

a1

a2b1

b2

S11 S22

S12

S21

ΓL

a1

a2b1

b2

S11

S22

S12

S21

ΓL

ΓL

Using the above rules, we can calculate the input reflection coefficient of a
two-port terminated by ΓL = b1/a1 using a couple of steps.
First we notice that there is a self-loop around b2.

a1

a2b1

b2

S11

S12

ΓL

S21

1 − S22ΓL

Next we remove the self loop and from here it’s clear that the

Γin =
b1
a1

= S11 +
S21S12ΓL
1− S22ΓL
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Mason’s Rule

a1

a2b1

b2

S11 S22

S12

S21

ΓL
ΓS

bS

 PP1 P2

Using Mason’s Rule, you can calculate the transfer function for a signal flow
graph by “inspection”

T =
P1

(
1−∑L(1)(1) +∑L(2)(1) − · · ·

)
+ P2

(
1−∑L(1)(2) + · · ·

)
+ · · ·

1−∑L(1) +∑L(2)−∑L(3) + · · ·

Each Pi defines a path, a directed route from the input to the output not
containing each node more than once. The value of Pi is the product of the
branch coefficients along the path.
For instance the path from bs to b1 (T = b1/bs) has two paths, P1 = S11 and
P2 = S21ΓLS12 52 / 81



Loop of Order Summation Notation
a1

a2b1

b2

S11 S22

S12

S21

ΓL
ΓS

bS

 a1

b

2

The notation
∑L(1) is the sum

over all first order loops.

A “first order loop” is defined as product of the branch values in a loop in the
graph. For the given example we have ΓsS11, S22ΓL, and ΓsS21ΓLS12.

A “second order loop” L(2) is the product of two non-touching first-order loops.
For instance, since loops S11Γs and S22ΓL do not touch, their product is a second
order loop.

A “third order loop” L(3) is likewise the product of three non-touching first order
loops.

The notation
∑L(1)(p) is the sum of all first-order loops that do not touch the

path p. For path P1, we have
∑L(1)(1) = ΓLS22 but for path P2 we have∑L(1)(2) = 0.
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Example: Input Reflection of Two-Port

a1

a2b1

b2

S11 S22

S12

S21

ΓL

Using Mason’s rule, you can quickly identify the relevant paths for a Γin = b1/a1.

There are two paths P1 = S11 and P2 = S21ΓLS12
There is only one first-order loop:

∑L(1) = S22ΓL and so naturally there are no
higher order loops.

Note that the loop does not touch path P1, so
∑L(1)(1) = S22ΓL.

Now let’s apply Mason’s general formula

Γin =
S11(1− S22ΓL) + S21ΓLS12

1− S22ΓL
= S11 +

S21ΓLS12
1− S22ΓL
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Example: Transducer Power Gain
a1

a2b1

b2

S11 S22

S12

S21

ΓL
ΓS

bS



By definition, the transducer power gain is given by

GT =
PL

PAVS
=

|b2|2(1− |ΓL|2)
|bs |2

1−|ΓS |2
=

∣∣∣∣
b2
bS

∣∣∣∣
2

(1− |ΓL|2)(1− |ΓS |2)

By Mason’s Rule, there is only one path P1 = S21 from bS to b2 so we have
∑

L(1) = ΓSS11 + S22ΓL + ΓSS21ΓLS12

∑
L(2) = ΓSS11ΓLS22

∑
L(1)(1) = 0
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Transducer Gain (cont)

The gain expression is thus given by

b2
bS

=
S21(1− 0)

1− ΓSS11 − S22ΓL − ΓSS21ΓLS12 + ΓSS11ΓLS22

The denominator is in the form of 1− x − y + xy which allows us to write

GT =
|S21|2(1− |ΓS |2)(1− |ΓL|2)

|(1− S11ΓS)(1− S22ΓL)− S21S12ΓLΓS |2

Recall that Γin = S11 + S21S12ΓL/(1− S22ΓL). Factoring out 1− S22ΓL from the
denominator we have

den =

(
1− S11ΓS − S21S12ΓL

1− S22ΓL
ΓS

)
(1− S22ΓL)

den =

(
1− ΓS

(
S11 +

S21S12ΓL
1− S22ΓL

))
(1− S22ΓL)

= (1− ΓSΓin)(1− S22ΓL) 56 / 81



Transducer Gain Expression

This simplifications allows us to write the transducer gain in the following
convenient form

GT =
1− |ΓS |2

|1− ΓinΓS |2
|S21|2

1− |ΓL|2
|1− S22ΓL|2

Which can be viewed as a product of the action of the input match “gain”, the
intrinsic two-port gain |S21|2, and the output match “gain”. Since the general
two-port is not unilateral, the input match is a function of the load.

Likewise, by symmetry we can also factor the expression to obtain

GT =
1− |ΓS |2

|1− S11ΓS |2
|S21|2

1− |ΓL|2
|1− ΓoutΓL|2
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Stability From Another Perspective

We can also derive stability in terms of the input reflection coefficient. For a
general two-port with load ΓL we have

v−2 = Γ−1
L v+2 = S21v

+
1 + S22v

+
2

v+2 =
S21

Γ−1
L − S22

v−1

v−1 =

(
S11 +

S12S21ΓL
1− ΓLS22

)
v+1

Γ = S11 +
S12S21ΓL
1− ΓLS22

If |Γ| < 1 for all ΓL, then the two-port is stable

Γ =
S11(1− S22ΓL) + S12S21ΓL

1− S22ΓL
=

S11 + ΓL(S21S12 − S11S22)

1− S22ΓL

=
S11 −∆ΓL
1− S22ΓL
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Stability Circle

To find the boundary between stability/instability, let’s set |Γ| = 1

∣∣∣∣
S11 −∆ΓL
1− S22ΓL

∣∣∣∣ = 1

|S11 −∆ΓL| = |1− S22ΓL|

After some algebraic manipulations, we arrive at the following equation
∣∣∣∣ΓL −

S∗
22 −∆∗S11

|S22|2 − |∆|2
∣∣∣∣ =

|S12S21|
|S22|2 − |∆|2

This is of course an equation of a circle, |ΓL − C | = R, in the complex plane with
center at C and radius R

Thus a circle on the Smith Chart divides the region of instability from stability.
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Example: Stability Circle

CS

RS

|S11| < 1

stable 
reg

ion

unstable 
reg

ion

In this example, the origin of the
circle lies outside the stability circle
but a portion of the circle falls
inside the unit circle. Is the region
of stability inside the circle or
outside?

This is easily determined if we note
that if ΓL = 0, then Γ = S11. So if
S11 < 1, the origin should be in the
stable region. Otherwise, if S11 > 1,
the origin should be in the unstable
region.
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Stability: Unilateral Case

Consider the stability circle for a unilateral two-port

CS =
S∗
11 − (S∗

11S
∗
22)S22

|S11|2 − |S11S22|2
=

S∗
11

|S11|2

RS = 0 |CS | =
1

|S11|

The cetner of the circle lies outside of the unit circle if |S11| < 1. The same is
true of the load stability circle. Since the radius is zero, stability is only
determined by the location of the center.

If S12 = 0, then the two-port is unconditionally stable if S11 < 1 and S22 < 1.

This result is trivial since
ΓS |S12=0 = S11

The stability of the source depends only on the device and not on the load.
61 / 81



Mu Stability Test

If we want to determine if a two-port is unconditionally stable, then we should use
the µ test

µ =
1− |S11|2

|S22 −∆S∗
11|+ |S12S21|

> 1

The µ test not only is a test for unconditional stability, but the magnitude of µ is
a measure of the stability. In other words, if one two port has a larger µ, it is
more stable.

The advantage of the µ test is that only a single parameter needs to be evaluated.
There are no auxiliary conditions like the K test derivation earlier.

The derivation of the µ test proceeds as follows. First let ΓS = |ρs |e jϕ and
evaluate Γout

Γout =
S22 −∆|ρs |e jϕ
1− S11|ρs |e jϕ
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Mu Test (cont)

Next we can manipulate this equation into the following circle |Γout − C | = R
∣∣∣∣Γout +

|ρs |S∗
11∆− S22

1− |ρs ||S11|2
∣∣∣∣ =

√
|ρs ||S12S21|

(1− |ρs ||S11|2)

For a two-port to be unconditionally stable, we’d like Γout to fall within the unit
circle

||C |+ R| < 1

||ρs |S∗
11∆− S22|+

√
|ρs ||S21S12| < 1− |ρs ||S11|2

||ρs |S∗
11∆− S22|+

√
|ρs ||S21S12|+ |ρs ||S11|2 < 1

The worse case stability occurs when |ρs | = 1 since it maximizes the left-hand side
of the equation. Therefore we have

µ =
1− |S11|2

|S∗
11∆− S22|+ |S12S21|

> 1 63 / 81



K-∆ Test

The K stability test has already been derived using Y parameters. We can also do
a derivation based on S parameters. This form of the equation has been
attributed to Rollett and Kurokawa.

The idea is very simple and similar to the µ test. We simply require that all points
in the instability region fall outside of the unit circle.

The stability circle will intersect with the unit circle if

|CL| − RL > 1

or
|S∗

22 −∆∗S11| − |S12S21|
|S22|2 − |∆|2 > 1

This can be recast into the following form (assuming |∆| < 1)

K =
1− |S11|2 − |S22|2 + |∆|2

2|S12||S21|
> 1
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Two-Port Power and Scattering Parameters

The power flowing into a two-port can be represented by

Pin =
|V+

1 |2
2Z0

(1− |Γin|2)

The power flowing to the load is likewise given by

PL =
|V−

2 |2
2Z0

(1− |ΓL|2)

We can solve for V+
1 using circuit theory

V+
1 + V−

1 = V+
1 (1 + Γin) =

Zin

Zin + ZS
VS

In terms of the input and source reflection coefficient

Zin =
1 + Γin
1− Γin

Z0 ZS =
1 + ΓS
1− ΓS

Z0
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Two-Port Incident Wave

Solve for V+
1

V+
1 (1 + Γin) =

VS(1 + Γin)(1− ΓS)

(1 + Γin)(1− ΓS) + (1 + ΓS)(1− Γin)

V+
1 =

VS

2

1− ΓS
1− ΓinΓS

The voltage incident on the load is given by

V−
2 = S21V

+
1 + S22V

+
2 = S21V

+
1 + S22ΓLV

−
2

V−
2 =

S21V
+
1

1− S22ΓL

PL =
|S21|2

∣∣V+
1

∣∣2

|1− S22ΓL|2
1− |ΓL|2

2Z0
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Operating Gain and Available Power

The operating power gain can be written in terms of the two-port s-parameters
and the load reflection coefficient

Gp =
PL

Pin
=

|S21|2 (1− |ΓL|2)
|1− S22ΓL|2 (1− |Γin|2)

The available power can be similarly derived from V+
1

Pavs = Pin|Γin=Γ∗S
=

∣∣V+
1a

∣∣2

2Z0
(1− |Γ∗S |2)

V+
1a = V+

1

∣∣
Γin=Γ∗S

=
VS

2

1− Γ∗S
1− |ΓS |2

Pavs =
|VS |2
8Z0

|1− ΓS |2

1− |ΓS |2
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Transducer Gain

The transducer gain can be easily derived

GT =
PL

Pavs
=

|S21|2 (1− |ΓL|2)(1− |ΓS |2)
|1− ΓinΓS |2 |1− S22ΓL|2

Note that as expected, GT is a function of the two-port s-parameters and the load
and source impedance.

If the two port is connected to a source and load with impedance Z0, then we
have ΓL = ΓS = 0 and

GT = |S21|2
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Unilateral Gain

+
vs

−

Z0

M1 M2

GS GL|S21|2

[
S11 0
S21 S22

]
Z0

If S12 ≈ 0, we can simplify the expression by just assuming S12 = 0. This is the
unilateral assumption

GTU =
1− |ΓS |2

|1− S11ΓS |2
|S21|2

1− |ΓL|2

|1− S22ΓL|2
= GS |S21|2 GL

The gain partitions into three terms, which can be interpreted as the gain from
the source matching network, the gain of the two port, and the gain of the load.
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Maximum Unilateral Gain

We know that the maximum gain occurs for the biconjugate match

ΓS = S∗
11

ΓL = S∗
22

GS ,max =
1

1− |S11|2

GL,max =
1

1− |S22|2

GTU,max =
|S21|2

(1− |S11|2)(1− |S22|2)

Note that if |S11| = 1 of |S22| = 1, the maximum gain is infinity. This is the
unstable case since |Sii | > 1 is potentially unstable.
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Design for Gain

So far we have only discussed power gain using bi-conjugate matching. This is
possible when the device is unconditionally stable. In many case, though, we’d like
to design with a potentially unstable device.

Moreover, we would like to introduce more flexibility in the design. We can trade
off gain for

bandwidth
noise
gain flatness
linearity
etc.

We can make this tradeoff by identifying a range of source/load impedances that
can realize a given value of power gain. While maximum gain is acheived for a
single point on the Smith Chart, we will find that a lot more flexibility if we
back-off from the peak gain.
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Unilateral Design

No real transistor is unilateral. But most are predominantly unilateral, or else we
use cascades of devices (such as the cascode) to realize such a device.

The unilateral figure of merit can be used to test the validity of the unilateral
assumption

Um =
|S12|2 |S21|2 |S11|2 |S22|2

(1− |S11|2)(1− |S22|2)

It can be shown that the transducer gain satisfies the following inequality

1

(1 + U)2
<

GT

GTU
<

1

(1− U)2

Where the actual power gain GT is compared to the power gain under the
unilateral assumption GTU . If the inequality is tight, say on the order of 0.1 dB,
then the amplifier can be assumed to be unilateral with negligible error.
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Gain Circles

We now can plot gain circles for the source and load. Let

gS =
GS

GS,max

gL =
GL

GL,max

By definition, 0 ≤ gS ≤ 1 and 0 ≤ gL ≤ 1. One can show that a fixed value of gS
represents a circle on the ΓS plane

∣∣∣∣ΓS − S∗
11gS

|S11|2 (gS − 1) + 1

∣∣∣∣ =
∣∣∣∣∣

√
1− gS(1− |S11|2)
|S11|2 (gS − 1) + 1

∣∣∣∣∣

More simply, |ΓS − CS | = RS . A similar equation can be derived for the load.
Note that for gS = 1, RS = 0, and CS = S∗

11 corresponding to the maximum gain.
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Gain Circles (cont)
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All gain circles lie on the line given by the angle of S∗
ii . We can select any desired

value of source/load reflection coefficient to acheive the desired gain. To minimize
the impedance mismatch, and thus maximize the bandwidth, we should select a
point closest to the origin.
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Extended Smith Chart

For |Γ| > 1, we can still employ the Smith Chart if we make the following
mapping. The reflection coefficient for a negative resistance is given by

Γ(−R + jX ) =
−R + jX − Z0

−R + jX + Z0
=

(R + Z0)− jX

(R − Z0)− jX

1

Γ∗
=

(R − Z0) + jX

(R + Z0) + jX

We see that Γ can be mapped to the unit circle by taking 1/Γ∗ and reading the
resistance value (and noting that it’s actually negative).
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Potentially Unstable Unilateral Amplifier

For a unilateral two-port with |S11| > 1, we note that the input impedance has a
negative real part. Thus we can still design a stable amplifier as long as the source
resistance is larger than ℜ(Zin)

ℜ(ZS) > |ℜ(Zin)|

The same is true of the load impedance if |S22| > 1. Thus the design procedure is
identical to before as long as we avoid source or load reflection coefficients with
real part less than the critical value.
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Pot. Unstable Unilateral Amp Example

Consider a transistor with the following S-Parameters

S11 = 2.02∠− 130.4◦

S22 = 0.50∠− 70◦
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CS

RS

stable region

1

S∗
11

GS = 5dB

ΓS

S12 = 0

S21 = 5.00∠60◦

Since |S11| > 1, the amplifier is
potentially unstable. We begin by
plotting 1/S∗

11 to find the negative
real input resistance.

Now any source inside this circle is
stable, since ℜ(ZS) > ℜ(Zin).

We also draw the source gain circle for
GS = 5dB.
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Amp Example (cont)

The input impedance is read off the Smith Chart from 1/S∗
11. Note the real part is

interpreted as negative
Zin = 50(−0.4− 0.4j)

The GS = 5dB gain circle is calculated as follows

gS = 3.15(1− |S11|2)

RS =

√
1− gS(1− |S11|2)
1− |S11|2 (1− gS)

= 0.236

CS =
gSS

∗
11

1− |S11|2 (1− gS)
= −.3 + 0.35j

We can select any point on this circle and obtain a stable gain of 5 dB. In
particular, we can pick a point near the origin (to maximize the BW) but with as
large of a real impedance as possible:

ZS = 50(0.75 + 0.4j)
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Bilateral Amp Design

In the bilateral case, we will work with the power gain Gp. The transducer gain is
not used since the source impedance is a function of the load impedaance. Gp, on
the other hand, is only a function of the load.

Gp =
|S21|2 (1− |ΓL|2)(

1−
∣∣∣S11−∆ΓL
1−S22ΓL

∣∣∣
2
)
|1− S22ΓL|2

= |S21|2 gp

It can be shown that gp is a circle on the ΓL plane. The radius and center are
given by

RL =

√
1− 2K |S12S21|gp + |S12S21|2g2

p
∣∣∣−1− |S22|2 gp + |∆|2 gp

∣∣∣
2

CL =
gp(S

∗
22 −∆∗S11)

1 + gp(|S22|2 − |∆|2)
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Bilateral Amp (cont)

We can also use this formula to find the maximum gain. We know that this
occurs when RL = 0, or

1− 2K |S12S21|gp,max + |S12S21|2g2
p,max = 0

gp,max =
1

|S12S21|
(
K −

√
K 2 − 1

)

Gp,max =

∣∣∣∣
S21
S12

∣∣∣∣
(
K −

√
K 2 − 1

)

The design procedure is as follows
1 Specify gp
2 Draw operating gain circle.
3 Draw load stability circle. Select ΓL that is in the stable region and not too close to

the stability circle.
4 Draw source stability circle.
5 To maximize gain, calculate Γin and check to see if ΓS = Γ∗in is in the stable region.

If not, iterate on ΓL or compromise.
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