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Why Sinusoidal Steady-State?
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Time Harmonic Steady-State

Compared with general transient case, sinusoidal case is very easy ∂
∂t → jω

Sinusoidal steady state has many important applications for RF/microwave circuits

At high frequency, T-lines are like interconnect for distances on the order of λ

Shorted or open T-lines are good resonators

T-lines are useful for impedance matching
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Why Sinusoidal Steady-State?

Typical RF system modulates a sinusoidal carrier (either frequency or phase). If
the modulation bandwidth is much smaller than the carrier, the system looks like
it’s excited by a pure sinusoid

Cell phones are a good example. Say the carrier frequency of 1 GHz and the voice
digital modulation is about 200 kHz(GSM) or 1.25 MHz(CDMA), less than a
0.1% of the bandwidth/carrier

Even a system like WiFi grabbing multiple channels might be 80 MHz wide, so
over a 5 GHz carrier, it’s still a small fractional bandwidth.

5G cellular systems have even wider bandwidths for higher data rates, but again
the carrier is moved to a higher frequency. So even a whopping 800 MHz of
bandwidth at 28 GHz is still “narrowband” (< 3%)
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OFDM

https://upload.wikimedia.org/wikipedia/commons/4/4e/OFDM_transmitter_ideal.png

To combat multi-path and frequency selective fading, multi-carrier modulation
schemes are used (OFDM used by both WiFi and 4G/ LTE/5G), and each carrier
is modulated in a very narrowband fashion.
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Generalized Distributed Circuit Model

Z Z Z Z Z

Y Y Y Y Y

Z ′: impedance per unit length (e.g. Z ′ = jωL′ + R ′)

Y ′: admittance per unit length (e.g. Y ′ = jωC ′ + G ′)

A lossy T-line might have the following form (but we’ll analyze the general case)
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Telegrapher’s Eq. Again

Applying KCL and KVL to a infinitesimal section

v(z + δz)− v(z) = −Z ′δzi(z)

i(z + δz)− i(z) = −Y ′δzv(z)

+

v(z)

−

+

v(z + δz)

−

i(z) i(z + δz)
Z ′

Y ′
+ −

Taking the limit as before (δz → 0)

dv

dz
= −Zi(z)

di

dz
= −Yv(z)
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Sin. Steady-State Voltage/Current

Taking derivatives (notice z is the only variable) we arrive at

d2v

dz2
= −Z

di

dz
= YZv(z) = γ2v(z)

d2i

dz2
= −Y

dv

dz
= YZi(z) = γ2i(z)

Where the propagation constant γ is a complex function

γ = α+ jβ =
√

(R ′ + jωL′)(G ′ + jωC ′)

The general solution to D2G − γ2G = 0 is e±γz
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Lossless Lines
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Lossless Line for Sinusoidal Steady State

v(z) = V+e−γz + V−eγz i(z) =
V+

Z0
e−γz − V−

Z0
eγz

The voltage and current are related (just as before, but now easier to derive).

Z0 =
√

Z ′

Y ′ is the characteristic impedance of the line (function of frequency with

loss).

For a lossless line we discussed before, Z ′ = jωL′ and Y ′ = jωC ′. Propagation
constant is imaginary

γ =
√
jωL′jωC ′ = j

√
L′C ′ω

The characteristic impedance is real: Z0 =
√

L′

C ′

β is like the spatial frequency, also known as the wave number

You might prefer to think of it in terms of wavelength λ, β = 2π
λ
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Back to Time-Domain

Recall that the real voltages and currents are the ℜ and ℑ parts of

v(z , t) = e±γze jωt = e jωt±βz

Thus the voltage/current waveforms are sinusoidal in space and time

Sinusoidal source voltage is transmitted unaltered onto T-line (with delay)

If there is loss, then γ has a real part α, and the wave decays or grows on the
T-line

e±γz = e±αze±jβz

The first term represents amplitude response of the T-line
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Passive T-Line/Wave Speed

For a passive line, we expect the amplitude to decay due to loss on the line

The speed of the wave is derived as before. In order to follow a constant point on
the wavefront, you have to move with velocity

d

dt
(ωt ± βz = constant)

Or, v = dz
dt = ±ω

β = ±
√

1
L′C ′
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Lossless T-Line Termination

Z0, ZL

z = 0z = −!

β

Okay, lossless line means γ = jβ (α = 0), and ℑ(Z0) = 0 (real characteristic
impedance independent of frequency)

The voltage/current phasors take the standard form

v(z) = V+e−γz + V−eγz

i(z) =
V+

Z0
e−γz − V−

Z0
eγz
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Lossless T-Line Termination (cont)

At load ZL = v(0)
i(0) = V++V−

V+−V−Z0

The reflection coefficient has the same form

ρL =
ZL − Z0

ZL + Z0

Can therefore write
v(z) = V+

(
e−jβz + ρLe

jβz
)

i(z) =
V+

Z0

(
e−jβz − ρLe

jβz
)
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Animations: Traveling and Standing Waves on a T-Line

Simple Sine Wave (no reflection): [click]

v(t) = V0 sin(ωt − βz)

If the reflected wave has the same magnitude as the incident wave, the familiar
standing wave pattern emerges.
Standing Wave (reflection equal to incident wave): [click]

v(t) = V0 sin(ωt − βz)− V0 sin(ωt + βz) = 2V0 cos(ωt) sin(βz)︸ ︷︷ ︸
standing wave
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Animations: Incident and Reflected Wave

Now suppose the reflected wave is weaker by a factor of ρ, where |ρ| < 1.
Sine wave plus reflection [click]

v(t) = V0 sin(ωt − βz)− ρV0 sin(ωt + βz)

Notice that there’s energy flow to the right and left, but the energy flow to the
right dominates
This produces a weaker flow to the right and a standing wave pattern. It’s as if
the standing wave is moving, but this is an illusion ... 16 / 53

http://rfic.eecs.berkeley.edu/courses/ee142/photos/sine_plus_reflection.gif


Standing and Traveling Wave Decomposition

Sine wave plus reflection recomposed as traveling wave and standing wave [click]

v(t) = V0 sin(ωt − βz)− ρV0 sin(ωt + βz)

= V0(ρ+ 1− ρ) sin(ωt − βz)− ρV0 sin(ωt + βz)

= V0ρ sin(ωt−βz)−ρV0 sin(ωt+βz)+(1−ρ) sin(ωt−βz)

= 2V0ρ cos(ωt) sin(βz)︸ ︷︷ ︸
standing wave

+(1− ρ) sin(ωt − βz)︸ ︷︷ ︸
traveling wave

Please see animations.
Otherwise it won’t make
sense !
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Standing Waves and VSWR
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Power on T-Line (I)

Let’s calculate the average power dissipation on the line at point z

Pav (z) =
1

2
ℜ [v(z)i(z)∗]

Or using the general solution

Pav (z) =
1

2

|V+|2
Z0

ℜ
((

e−jβz + ρLe
jβz

)(
e jβz − ρ∗Le

−jβz
))

The product in the ℜ terms can be expanded into four terms

1 + ρLe
2jβz − ρ∗Le

−2jβz︸ ︷︷ ︸
a−a∗

−|ρL|2

Notice that a− a∗ = 2jℑ(a)
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Power on T-Line (II)

The average power dissipated at z is therefore

Pav =
|V+|2
2Z0

(
1− |ρL|2

)
Power flow is constant (independent of z) along line (lossless)

No power flows if |ρL| = 1 (open or short)

Even though power is constant, voltage and current are not!

20 / 53



Voltage along T-Line

When the termination is matched to the line impedance ZL = Z0, ρL = 0 and
thus the voltage along the line |v(z)| = |V+| is constant. Otherwise

|v(z)| = |V+||1 + ρLe
2jβz | = |V+||1 + ρLe

−2jβℓ|

The voltage magnitude along the line can be written as

|v(−ℓ)| = |V+||1 + |ρL|e j(θ−2βℓ)|

The voltage is maximum when the 2βℓ is a equal to θ+ 2kπ, for any integer k ; in
other words, the reflection coefficient phase modulo 2π

Vmax = |V+|(1 + |ρL|)
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Voltage along T-Line

ρL = |ρL |ejθ

θ

ρ(z)

Vmin

Vmax2β�

Notice that the vector ρ(z) rotates around the circle at a rate of 2βℓ, where ℓ is
the distance moved.
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Voltage Standing Wave Ratio (SWR)

Similarly, minimum when θ + kπ, where k is an integer k ̸= 0

Vmin = |V+|(1− |ρL|)

The ratio of the maximum voltage to minimum voltage is an important metric
and commonly known as the voltage standing wave ratio, VSWR (sometimes
pronounced viswar), or simply the standing wave ratio SWR

VSWR =
Vmax

Vmin
=

1 + |ρL|
1− |ρL|

It follows that for a shorted or open transmission line the VSWR is infinite, since
|ρL| = 1.

23 / 53



SWR Location

Physically the maxima occur when the reflected wave adds in phase with the
incoming wave, and minima occur when destructive interference takes place. The
distance between maxima and minima is π in phase, or 2βδx = π, or

δx =
π

2β
=
λ

4

VSWR is important because it can be deduced with a relative measurement.
Absolute measurements are difficult at microwave frequencies. By measuring
VSWR, we can readily calculate |ρL|.
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VSWR → Impedance Measurement

By measuring the location of the voltage minima from an unknown load, we can
solve for the load reflection coefficent phase θ

ψmin = θ − 2βℓmin = ±π

Note that
|v(−ℓmin)| = |V+||1 + |ρL|e jψmin |

Thus an unknown impedance can be characterized at microwave frequencies by
measuring VSWR and ℓmin and computing the load reflection coefficient. This
was an important measurement technique that has been largely supplanted by a
modern network analyzer with built-in digital calibration and correction.
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VSWR Example

Consider a transmission line terminated in a load impedance ZL = 2Z0. The
reflection coefficient at the load is purely real

ρL =
zL − 1

zL + 1
=

2− 1

2 + 1
=

1

3

Since 1 + |ρL| = 4/3 and 1− |ρL| = 2/3, the VSWR is equal to 2.

Since the load is real, the voltage minima will occur at a distance of λ/4 from the
load
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Impedance of T-Lines (“Ohm’s Law in Freq Domain”)
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Impedance of T-Line (I)

We have seen that the voltage and current along a transmission line are altered by
the presence of a load termination. At an arbitrary point z , wish to calculate the
input impedadnce, or the ratio of the voltage to current relative to the load
impdance ZL

Zin(−ℓ) =
v(−ℓ)
i(−ℓ)

It shall be convenient to define an analogous reflection coefficient at an arbitrary
position along the line

ρ(−ℓ) = V−e−jβℓ

V+e jβℓ
= ρLe

−2jβℓ
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Impedance of T-Line (II)

ρ(z) has a constant magnitude but a periodic phase. From this we may infer that
the input impedance of a transmission line is also periodic (relation between ρ and
Z is one-to-one)

Zin(−ℓ) = Z0
1 + ρLe

−2jβℓ

1− ρLe−2jβℓ

The above equation is of paramount important as it expresses the input impedance
of a transmission line as a function of position ℓ away from the termination.
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Impedance of T-Line (III)

This equation can be transformed into another more useful form by substituting
the value of ρL

ρL =
ZL − Z0

ZL + Z0

Zin(−ℓ) = Z0
ZL(1 + e−2jβℓ) + Z0(1− e−2jβℓ)

Z0(1 + e−2jβℓ) + ZL(1− e−2jβℓ)

Using the common complex expansions for sine and cosine, we have

tan(x) =
sin(x)

cos(x)
=

(e jx − e−jx)/2j

(e jx + e−jx)/2
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Impedance of T-Line (IV)

The expression for the input impedance is now written in the following form

Zin(−ℓ) = Z0
ZL + jZ0 tan(βℓ)

Z0 + jZL tan(βℓ)

This is the most important equation of the lecture, known sometimes as the
“transmission line equation”
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Shorted Line I/V

The shorted transmission line has infinite VSWR and ρL = −1. Thus the
minimum voltage Vmin = |V+|(1− |ρL|) = 0, as expected. At any given point
along the transmission line

v(z) = V+(e−jβz − e jβz) = −2jV+ sin(βz)

whereas the current is given by

i(z) =
V+

Z0
(e−jβz + e jβz)

or

i(z) =
2V+

Z0
cos(βz)
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Shorted Line Impedance (I)

The impedance at any point along the line takes on a simple form

Zin(−ℓ) =
v(−ℓ)
i(−ℓ) = jZ0 tan(βℓ)

This is a special case of the more general transmision line equation with ZL = 0.

Note that the impedance is purely imaginary since a shorted lossless transmission
line cannot dissipate any power.

We have learned, though, that the line stores reactive energy in a distributed
fashion.
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Shorted Line Impedance (II)

A plot of the input impedance as a function of z is shown below

-1 -0.8 -0.6 -0.4 -0.2 0

2

4

6

8

10
Zin(λ/4)

Zin(λ/2)

z

λ

Zin(z)

Z0

The tangent function takes on infinite values when βℓ approaches π/2 modulo 2π
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Shorted Line Impedance (III)

Shorted transmission line can have infinite input impedance!

This is particularly surprising since the load is in effect transformed from a short
of ZL = 0 to an infinite impedance.

A plot of the voltage/current as a function of z is shown below
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Shorted Line Reactance

ℓ≪ λ/4 → inductor

ℓ < λ/4 → inductive
reactance

ℓ = λ/4 → open (acts
like resonant parallel LC
circuit)

ℓ > λ/4 but ℓ < λ/2 →
capacitive reactance

And the process repeats
...
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Open Line I/V

The open transmission line has infinite VSWR and ρL = 1. At any given point
along the transmission line

v(z) = V+(e−jβz + e jβz) = 2V+ cos(βz)

whereas the current is given by

i(z) =
V+

Z0
(e−jβz − e jβz)

or

i(z) =
−2jV+

Z0
sin(βz)
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Open Line Impedance (I)

The impedance at any point along the line takes on a simple form

Zin(−ℓ) =
v(−ℓ)
i(−ℓ) = −jZ0 cot(βℓ)

This is a special case of the more general transmision line equation with ZL = ∞.

Note that the impedance is purely imaginary since an open lossless transmission
line cannot dissipate any power.

We have learned, though, that the line stores reactive energy in a distributed
fashion.
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Open Line Impedance (II)

A plot of the input impedance as a function of z is shown below
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The cotangent function takes on zero values when βℓ approaches π/2 modulo 2π
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Open Line Impedance (III)

Open transmission line can have zero input impedance!

This is particularly surprising since the open load is in effect transformed from an
open

A plot of the voltage/current as a function of z is shown below
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Open Line Reactance

ℓ≪ λ/4 → capacitor

ℓ < λ/4 → capacitive
reactance

ℓ = λ/4 → short (acts
like resonant series LC
circuit)

ℓ > λ/4 but ℓ < λ/2 →
inductive reactance

And the process repeats
...

.25 .5 .75 1.0 1.25

-7.5

-5

-2.5

0

2. 5

5

7. 5

10

jX(z)

z

λ

41 / 53



λ/2 Transmission Line

Plug into the general T-line equaiton for any multiple of λ/2

Zin(−mλ/2) = Z0
ZL + jZ0 tan(−βλ/2)
Z0 + jZL tan(−βλ/2)

βλm/2 = 2π
λ
λm
2 = πm

tanmπ = 0 if m ∈ Z
Zin(−λm/2) = Z0

ZL
Z0

= ZL

Impedance does not change ... it’s periodic about λ/2 (not λ)
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λ/4 Transmission Line

Plug into the general T-line equaiton for any multiple of λ/4

βλm/4 = 2π
λ
λm
4 = π

2m

tanmπ
2 = ∞ if m is an odd integer

Zin(−λm/4) = Z2
0

ZL

λ/4 line transforms or “inverts” the impedance of the load
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Multimode Propagation

“ground”

distributed coupling 

Up to now, we have assumed that the signal travels along two conductors, one
“signal” conductor and one “ground” conductor. Even if we “ground” the second
conductor, there’s no reason that it has to stay “grounded”.

In fact, like it or not, there’s always a third conductor at play. For example, when
two wires are routed on a PCB, the ground plane can act as a potential signal
return path (so can earth ground). So we really have to consider the possibility of
exciting this “common mode” transmission line.
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Stripline Example

Here we have two conductors that form a stripline (differential line) but they
reside above a ground plane. So each one individually couples to the ground plane
and forms another transmission line.

In general, we must model this secondary transmission line to account properly for
the actual signal propagation.
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Distributed Model

C

L

M

Cg

Cg

L

Each line has distributed inductance and capacitance to the ground as before, but
also mutual inductance and capacitnace to the other line.

Note that the return current flowing on the ground plane also contributes to the
inductance (mutually coupled to all other conductors) but we can effectively lump
the entire loop of signal + ground into one inductance as shown.
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Odd Mode Excitement

v1 = +vo/2

v2 = −vo/2

i1 = +io

i2 = −io

i3 = 0
v3 = 0

“ground”

If we assume that v1 = −v2, we say we are exciting the odd mode. In this mode,
no signal current flows into the ground plane as i1 = −i2.

This mode can be excited in a symmetric structure with a differential circuit.
Note that if we ground v2 at the source, we are not exciting only the odd mode.

The propagation constant is given by

Zo =

√
L−M

C +
Cg

2
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Even Mode Excitement

“ground”

v1 = ve

v2 = ve

i1 = +ie/2

i2 = +ie/2

i3 = −ie
v3 = 0

If we assume that v1 = v2, we say we are exciting the even mode. In this mode,
there is necessarily a signal current flowing into the ground plane.

This mode can be excited by shorting the two signal conductors together and
observing the current flow.

The propagation constant is given by

Ze =

√
L+M

2Cg
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General Excitement

v1

v2

vsig

In general, we can excite both the even and odd modes. For example, if we
ground one side of the T-line and drive it as shown in a single-ended fashion, we
are exciting both modes

v1 = vsig = ve + vo

v2 = 0 = ve − vo

Note that both even and odd mode is excited in this case.
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Single-Ended Excitation

The difference in voltage between the lines is the odd mode

2vo = v1 − v2

vo = (v1 − v2)/2 = vsig/2

While the average voltage on the lines is the even mode

v1 + v2 = 2ve

ve = (v1 + v2)/2 = vsig/2
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Two Modes, Two Waves

Since the above excites both the even and odd modes, we have to take them into
account

v1(z) = vo(e
jkoz + ρL,oe

−jkoz) + ve(e
jkez + ρL,ee

−jkez)

v2(z) = −vo(e
jkoz + ρL,oe

−jkoz) + ve(e
jkez + ρL,ee

−jkez)

Where we current boundary conditions are captured by the load reflection
coefficients ρe,o , which are not equal.
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Example: Quarter Wave Balun
v1

v2

vsig

Zo, ko

Ze, ke

RL = Zo

CL ≈ 0F

Rs = Zo

� =
λ

4

A transmission line that is λ/4 can be used as a balun. To see this, let’s solve
both the even and odd modes for the case that the line is terminated.

For the odd mode, the boundary condition is clearly determined by the load

ρo = ρL =
ZL − Zo

ZL + Zo
≈ 0

Whereas for the even mode, let’s say it’s approximately an open circuit

ρe =
Zopen − Ze

Zopen + Ze
≈ 1
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Example: Quarter Wave Balun (2)

Substituting in the above equations

v1(z) = voe
jkoz + ve(e

jkez + e−jkez)

v2(z) = −voe
jkoz + ve(e

jkez + e−jkez)

Notice that the second terms precisely cancel out at the load since

e jπ/2 = +j

and
e−jπ/2 = −j

This implies that the signal at the load side is a pure odd mode, or balanced
signal. To achieve this, we desire a high common mode impedance to satisfy
ρe ≈ 1.
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