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First Trans-Atlantic Cable

Problem: A long cable – the trans-atlantic telephone cable – is laid out connecting
NY to London. We would like analyze the electrical properties of this cable.

For simplicity, assume the cable has a uniform cross-sectional configuration
(shown as two wires here)

VNY (t)

RNY

RLondon
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Trans-Atlantic Cable Analysis

Can we do it with circuit theory?

Fundamental problem with circuit theory is that it assumes that the speed of light
is infinite. So all signals are in phase: V (z) = V (z + ℓ)

Consequently, all variations in space are ignored: ∂
∂z → 0

This allows the lumped circuit approximation.
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Lumped Circuit Properties of Cable

Shorted Line: The long loop has inductance since the magnetic flux ψ is not
negligible (long cable) (ψ = LI )

ψ

I

I

Large Inductance

Open Line: The cable also has substantial capacitance (Q = CV )
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Sectional Model (I)

So do we model the cable as an inductor or as a capacitor? Or both? How?

Try a distributed model: Inductance and capacitance occur together. They are
intermingled.

L L L L

i+

v+ v+ v+ v+
vL = 0V

i+ i+ i+

Can add loss (series and shunt resistors) but let’s keep it simple for now.

Add more sections and solution should converge
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Sectional Model (II)

More sections → The equiv LC circuit represents a smaller and smaller section
and therefore lumped circuit approximation is more valid

This is an easy problem to solve with SPICE.

But people in 1866 didn’t have computers ... how did they analyze a problem with
hundreds of inductors and capacitors?
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Distributed Model

L′ L′ L′ L′

C ′ C ′ C ′ C ′ C ′

L = δzL′

C = δzC ′

δz

Go to a fully distributed model by letting the number of sections go to infinity

Define inductance and capacitance per unit length L′ = L/ℓ, C ′ = C/ℓ

For an infinitesimal section of the line, circuit theory applies since signals travel
instantly over an infinitesimally small length
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KCL and KVL for a small section

KCL: i(z) = δzC ′ ∂v(z)
∂t + i(z + δz)

KVL: v(z) = δzL′ ∂i(z+δz)
∂t + v(z + δz)

Take limit as δz → 0

We arrive at “Telegrapher’s Equatins”

lim
δz→0

i(z)− i(z + δz)

δz
= − ∂i

∂z
= C ′∂v

∂t

lim
δz→0

v(z)− v(z + δz)

δz
= −∂v

∂z
= L′

∂i

∂t
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Derivation of Wave Equations

We have two coupled equations and two unkowns (i and v) ... can reduce it to
two de-coupled equations:

∂2i

∂t∂z
= −C ′∂

2v

∂t2
∂2v

∂z2
= −L′

∂2i

∂z∂t

note order of partials can be changed (at least in EE)

∂2v

∂z2
= L′C ′∂

2v

∂t2

Same equation can be derived for current:

∂2i

∂z2
= L′C ′ ∂

2i

∂t2
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The Wave Equation
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The Wave Equation

We see that the currents and voltages on the transmission line satisfy the
one-dimensional wave equation. This is a partial differential equation. The solution
depends on boundary conditions and the initial condition.

∂2i

∂z2
= L′C ′ ∂

2i

∂t2
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Wave Equation Solution

Consider the function f (z , t) = f (z ± vt) = f (u):

∂f

∂z
=
∂f

∂u

∂u

∂z
=
∂f

∂u

∂2f

∂z2
=
∂2f

∂u2

∂f

∂t
=
∂f

∂u

∂u

∂t
= ±v

∂f

∂u

∂2f

∂t2
= ±v

∂

∂u

(
∂f

∂t

)
= v2

∂2f

∂u2

∂2f

∂z2
=

1

v2
∂2f

∂t2

It satisfies the wave equation!
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Wave Motion

f(z − vt)

z

z

f(z + vt)

General voltage solution: v(z , t) = f +(z − vt) + f −(z + vt)

Where v =
√

1
L′C ′
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Wave Speed

Speed of motion can be deduced if we observe the speed of a point on the aveform

z ± vt = constant

To follow this point as time elapses, we must move the z coordinate in step. This
point moves with velocity

dz

dt
± v = 0

This is the speed at which we move with speed dz
dt = ±v

v is the velocity of wave propagation
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“Ohm’s Law” for T-Lines
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Current / Voltage Relationship (I)

Since the current also satisfies the wave equation

i(z , t) = g+(z − vt) + g−(z + vt)

Recall that on a transmission line, current and voltage are related by

∂i

∂z
= −C ′∂v

∂t

For the general function this gives

∂g+

∂u
+
∂g−

∂u
= −C ′

(
−v

∂f +

∂u
+ v

∂f −

∂u

)
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Current / Voltage Relationship (II)

Since the forward waves are independent of the reverse waves
∂g+

∂u
= C ′v

∂f +

∂u

∂g−

∂u
= −C ′v

∂f −

∂u

Within a constant we have

g+ =
f +

Z0
g− = − f −

Z0

Where Z0 =
√

L′

C ′ is the “Characteristic Impedance” of the line
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A Side Note on Current

Notice that the currents in the forward wave has the same sign

g+ =
v+

Z0

But the reverse wave has a negative sign

g− = −v−

Z0

This is related to the definition of current. If positive charges are moving left,
then the corresponding current is negative.

Clearly understand the definition of currents on a transmission line with respect to
the two conductors. This is a “odd” mode current, since the top and bottom
conductors carry equal and opposite currents. There’s also an “even” mode
current that we are neglecting for now.
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Example: Step Into Infinite Line

Excite a step function onto a transmission line

The line is assumed uncharged: Q(z , 0) = 0, ψ(z , 0) = 0 or equivalently
v(z , 0) = 0 and i(z , 0) = 0

By physical intuition, we would only expect a forward traveling wave since the line
is infinite in extent

The general form of current and voltage on the line is given by

v(z , t) = v+(z − vt)

i(z , t) = i+(z − vt) =
v+(z − vt)

Z0

The T-line looks like a resistor of Z0 ohms!
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Example 1 (cont)

We may therefore model the line with the following simple equivalent circuit

Rs

Z0

is i+ =
v+

Z0

Vs

Since is = i+, the excited voltage wave has an amplitude of

v+ =
Z0

Z0 + Rs
Vs

It’s surprising that the voltage on the line is not equal to the source voltage
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Example 1 (cont)

The voltage on the line is a delayed version of the source voltage

v(z, t = !/v)
Vs

Z0

Z0 + Rs

z
!

v

21 / 59



Energy to “Charge” Transmission Line

Rs

Z0

i+ =
v+

Z0

+
Vs

−

+
v+

−

The power flow into the line is given by

P+
line = i+(0, t)v+(0, t) =

(v+(0, t))
2

Z0

Or in terms of the source voltage

P+
line =

(
Z0

Z0 + Rs

)2 V 2
s

Z0
=

Z0

(Z0 + Rs)2
V 2
s
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Energy Stored in Inds and Caps (I)

But where is the power going? The line is lossless!

Energy stored by a cap/ind is 1
2CV

2/1
2LI

2

At time td , a length of ℓ = vtd has been “charged”:

1

2
CV 2 =

1

2
ℓC ′

(
Z0

Z0 + Rs

)2

V 2
s

1

2
LI 2 =

1

2
ℓL′

(
Vs

Z0 + Rs

)2

no energy
+

= vtd

The total energy is thus

1

2
LI 2 +

1

2
CV 2 =

1

2

ℓV 2
s

(Z0 + Rs)2
(
L′ + C ′Z 2

0

)
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Energy Stored (II)

Recall that Z0 =
√
L′/C ′. The total energy stored on the line at time td = ℓ/v :

Eline(ℓ/v) = ℓL′
V 2
s

(Z0 + Rs)2

And the power delivered onto the line in time td :

Pline ×
ℓ

v
=

l
v Z0V

2
s

(Z0 + Rs)2
= ℓ

√
L′

C ′

√
L′C ′ V 2

s

(Z0 + Rs)2

As expected, the results match (conservation of energy).
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Transmission Line Termination

Rs

i+ =
v+

Z0

+
Vs

−

+
v+

−
!

Z0, td i =
vL

RL

Consider a finite transmission line with a termination resistance

At the load we know that Ohm’s law is valid: IL = VL/RL

So at time t = ℓ/v , our pulse reaches the load. Since the current on the T-line is
i+ = v+/Z0 = Vs/(Z0 + Rs) and the current at the load is VL/RL, a discontinuity
is produced at the load.
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Reflections

Thus a reflected wave is created at discontinuity

VL(t) = v+(ℓ, t) + v−(ℓ, t)

IL(t) =
1

Z0
v+(ℓ, t)− 1

Z0
v−(ℓ, t) = VL(t)/RL

Solving for the forward and reflected waves

2v+(ℓ, t) = VL(t)(1 + Z0/RL)

2v−(ℓ, t) = VL(t)(1− Z0/RL)
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Reflection Coefficient

And therefore the reflection from the load is given by

ΓL =
V−(ℓ, t)

V+(ℓ, t)
=

RL − Z0

RL + Z0

The reflection coefficient is a very important concept for transmission lines:
−1 ≤ ΓL ≤ 1

ΓL = −1 for RL = 0 (short)

ΓL = +1 for RL = ∞ (open)

ΓL = 0 for RL = Z0 (match)

Impedance match is the proper termination if we don’t want any reflections
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Propagation of Reflected Wave (I)

If ΓL ̸= 0, a new reflected wave travels toward the source and unless Rs = Z0,
another reflection also occurs at source!

To see this consider the wave arriving at the source. Recall that since the wave
PDE is linear, a superposition of any number of solutins is also a solution.

At the source end the boundary condition is as follows

Vs − IsRs = v+1 + v−1 + v+2

The new term v+2 is used to satisfy the boundary condition
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Propagation of Reflected Wave (II)

The current continuity requires Is = i+1 + i−1 + i+2

Vs = (v+1 − v−1 + v+2 )
Rs

Z0
+ v+1 + v−1 + v+2

Solve for v+2 in terms of known terms

Vs =

(
1 +

Rs

Z0

)
(v+1 + v+2 ) +

(
1− Rs

Z0

)
v−1 +

But v+1 = Z0
Rs+Z0

Vs

Vs =
Rs + Z0

Z0

Z0

Rs + Z0
Vs +

(
1− Rs

Z0

)
v−1 +

(
1 +

Rs

Z0

)
v+2
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Propagation of Reflected Wave (III)

So the source terms cancel out and

v+2 =
Rs − Z0

Z0 + Rs
v−1 = Γsv

−
1

The reflected wave bounces off the source impedance with a reflection coefficient
given by the same equation as before

Γ(R) =
R − Z0

R + Z0

The source appears as a short for the incoming wave

Invoke superposition! The term v+1 took care of the source boundary condition so
our new v+2 only needed to compensate for the v−1 wave ... the reflected wave is
only a function of v−1
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Bounce Diagram

We can track the multiple reflections with a “bounce diagram”

T
i
m
e

Space

td

2td

3td

4td

5td

6td

/2/ 34 /4

v+
1

v−
1

= ΓLv+
1

v+
2 = Γsv−

1 = ΓsΓLv+
1

v−
2

= ΓLv+
2

= ΓsΓ
2
Lv+

1

v+
3 = Γsv−

2 = Γ2
sΓ2

Lv+
1

v−
3

= ΓLv+
3

= Γ2
sΓ

3
Lv+

1

v+
4 = Γsv−

3 = Γ3
sΓ3

Lv+
1
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Freeze time

If we freeze time and look at the line, using the bounce diagram we can figure out
how many reflections have occurred

For instance, at time 2.5td = 2.5ℓ/v three waves have been excited (v+1 ,v−1 , v+2 ),
but v+2 has only travelled a distance of ℓ/2

To the left of ℓ/2, the voltage is a summation of three components:
v = v+1 + v−1 + v+2 = v+1 (1 + ΓL + ΓLΓs).

To the right of ℓ/2, the voltage has only two components:
v = v+1 + v−1 = v+1 (1 + ΓL).
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Freeze Space

We can also pick at arbitrary point on the line and plot the evolution of voltage as
a function of time

For instance, at the load, assuming RL > Z0 and RS > Z0, so that Γs,L > 0, the
voltage at the load will will increase with each new arrival of a reflection

v+
1 = .4

v+
2 = .04 v−

2 = .02 v+
3 = .004 v−

3 = .002

Rs = 75Ω

RL = 150Ω

Γs = 0.2

ΓL = 0.5

vss = 2/3V.66 .666 .6666 .66666

td 3td 5td 7td 9td 11td

vL(t)

ts0

v−
1 = .2

.6

0.4+0.2 0.6+0.04+0.04*.5 0.66+0.004+0.004*.5

v+
4 = .0004

.666666
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Steady-State Voltage on Line (I)

To find steady-state voltage on the line, we sum over all reflected waves:

vss = v+1 + v−1 + v+2 + v−2 + v+3 + v−3 + v+4 + v−4 + · · ·

Or in terms of the first wave on the line

vss = v+1 (1 + ΓL + ΓLΓs + Γ2LΓs + Γ2LΓ
2
s + Γ3LΓ

2
s + Γ3LΓ

3
s + · · ·

Notice geometric sums of terms like ΓkLΓ
k
s and Γk+1

L Γks . Let x = ΓLΓs :

vss = v+1 (1 + x + x2 + · · ·+ ΓL(1 + x + x2 + · · · ))
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Steady-State Voltage on Line (II)

The sums converge since x < 1

vss = v+1

(
1

1− ΓLΓs
+

ΓL
1− ΓLΓs

)

Or more compactly

vss = v+1

(
1 + ΓL
1− ΓLΓs

)

Substituting for ΓL and Γs gives

vss = Vs
RL

RL + Rs
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What Happened to the T-Line?

For steady state, the equivalent circuit shows that the transmission line has
disappeared.

This happens because if we wait long enough, the effects of propagation delay do
not matter

Conversly, if the propagation speed were infinite, then the T-line would not matter

But the presence of the T-line will be felt if we disconnect the source or load!

That’s because the T-line stores reactive energy in the capaciance and inductance

Every real circuit behaves this way! Circuit theory is an abstraction
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TV Ghosts

Antenna
Signal In

Television

If the cable from the antenna to the analog TV is
very long, and the line is not properly terminated,
you’ll see a “ghost” image, which is usually the first
reflected wave making a round trip delay. There are
more ghosts, but they are weaker.

Note that the reflected signal is essentially forming
an exact copy of the first signal but just arriving
late.

A fond childhood memory !
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PCB Interconnect

Suppose ℓ = 3cm, v = 3× 108m/s, so that tp = ℓ/v = 10−10s = 100ps

On a time scale t < 100ps, the voltages on interconnect act like transmission
lines!

Fast digital circuits need to consider T-line effects

conductor
ground

dielectric

logic gate

PCB substrate

Rs

vs
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Example: Open Line (I)

Source impedance is Z0/4, so Γs = −0.6, load is open so ΓL = 1

As before a positive going wave is launched v+1 = Z0/(Z0 + Z0/4)Vs = 0.8Vs

Upon reaching the load, a reflected wave of of equal amplitude is generated and
the load voltage overshoots vL = v+1 + v−1 = 1.6V

Note that the current reflection is negative of the voltage

Γi =
i−

i+
= −v−

v+
= −Γv

This means that the sum of the currents at the load is zero (open)
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Example: Open Line (II)

At the source a new reflection is created v+2 = ΓLΓsv
+
1 , and note Γs < 0, so

v+2 = −.6× 0.8 = −0.48.

At a time 3tp, the line charged initially to v+1 + v−1 drops in value

vL = v+1 + v−1 + v+2 + v−2 = 1.6− 2× .48 = .64

So the voltage on the line undershoots ( < 1 times Vs)

And on the next cycle 5tp the load voltage again overshoots

We observe ringing with frequency 2tp
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Example: Open Line Ringing

0 2 0 4 0 6 0 8 0
time (ns)

1.5

1.25

1.0

.75

.5

.25

0

V 
(V

)
V 

(V
)

1 .5

1.25

1.0

.75

.5

.25

0

V 
(V

)
V 

(V
)

 VT("/net7") 

 VT("/net6") 

M0(2.674ns, 800mV)M0(2.674ns, 800mV)M0(2.674ns, 800mV)M0(2.674ns, 800mV)M0(2.674ns, 800mV)

M1(10.07ns, 1.12V)M1(10.07ns, 1.12V)M1(10.07ns, 1.12V)M1(10.07ns, 1.12V)M1(10.07ns, 1.12V)

M2(17.31ns, 928mV)M2(17.31ns, 928mV)M2(17.31ns, 928mV)M2(17.31ns, 928mV)M2(17.31ns, 928mV)

M3(24.24ns, 1.043V)M3(24.24ns, 1.043V)M3(24.24ns, 1.043V)M3(24.24ns, 1.043V)M3(24.24ns, 1.043V)

M4(6.987ns, 1.6V)M4(6.987ns, 1.6V)M4(6.987ns, 1.6V)M4(6.987ns, 1.6V)M4(6.987ns, 1.6V)

M5(13.31ns, 640mV)M5(13.31ns, 640mV)M5(13.31ns, 640mV)M5(13.31ns, 640mV)M5(13.31ns, 640mV)

M6(20.55ns, 1.216V)M6(20.55ns, 1.216V)M6(20.55ns, 1.216V)M6(20.55ns, 1.216V)M6(20.55ns, 1.216V)

M7(28.1ns, 870.4mV)M7(28.1ns, 870.4mV)M7(28.1ns, 870.4mV)M7(28.1ns, 870.4mV)M7(28.1ns, 870.4mV)

time (ns)

Load End

Source End

Observed waveform as a function of time. Risetime due to SPICE tstep = 20ps.
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Physical Intuition: Shorted Line (I)

The intitial step charges the “first” capacitor through the “first” inductor since
the line is uncharged

There is a delay since on the rising edge of the step, the inductor is an open

Each successive capacitor is charged by “its” inductor in a uniform fashion ... this
is the forward wave v+1

L L L L

i+

v+ v+ v+ v+
vL = 0V

i+ i+ i+
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Physical Intuition: Shorted Line (II)

The volage on the line goes up from left to right due to the delay in charging each
inductor through the capacitors

The last inductor, though, does not have a capacitor to charge

Thus the last inductor is discharged ... the extra charge comes by discharging the
last capacitor

As this capacitor discharges, so does it’s neighboring capacitor to the left

Again there is a delay in discharging the caps due to the inductors

This discharging represents the backward wave v−1
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Transmission Line Menagerie

striplinemicrostripline coplanar
rectangular
waveguide

coaxial
two wires

(twisted pair)

G S G S+ S– G 

S

G 

S?S

G 

S = Signal    G = Ground

G S

(S      G) G? 

T-Lines come in many shapes and sizes

Coaxial usually 75Ω or 50Ω (cable TV, Internet)

Microstrip lines are common on printed circuit boards (PCB) and integrated
circuit (ICs)

Coplanar also common on PCB and ICs

Twisted pairs is almost a T-line, ubiquitous for phones/Ethernet
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Planar PCB and Integrated Circuit T-Lines

W

S

� � � � � � � �� � � � � � � � �

� � �� � ��� ��  � � �
 � � � � � �� � �	 � � � �� �� � �� � �� �� �

� � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � � �

� � �� � ��� ��  �� � �� � ��� ��  �

�
� �
� �
���
��

�

� � � � � � � �� � � � � � � � �

� �� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

�
��
��
� �
�

�
��
��
� �
�

���
��
� �
�

���
��
� �
�� �

� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � � � � � � � � � � � �� � � � � � �� � � �  � � � � �
� � � 	

� � � � � � � � �� � �� � � � � � �� � � �  � � � � �
� � � � 	 � � � � � � � � � � � �
� � � � � � � � � � 	

If we restrict the structures to planar configurations, these are the most popular
structures. The “Silicon Substrate” is partially conductive whereas on a PCB a
non-conductive dielectric layer would be used. The conductivity of silicon leads to
additional loss and higher order modes that should be suppressed.
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Propagation Modes

Note the distinction between a single-ended T-line and a differential T-line. The
differential T-line actually supports two modes of propagation, called even-mode
and odd-mode (common-mode and differential-mode), and we’ll discuss that
later. In practice, all T-lines support both modes, it’s just one mode is much more
dominant.

Notice that if a “balanced” line is constructed on top of a ground plane (or near a
physical conductor), currents can also “return” through the ground plane. This is
not the intended propagation mode !
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Waveguides and Transmission Lines

The transmission lines we’ve been considering propagate the “TEM” mode or
Transverse Electro-Magnetic. Later we’ll see that they can also propagation other
modes

Waveguides cannot propagate TEM, but propage TM (Transverse Magnetic) and
TE (Transverse Electric)

In general, any set of more than one lossless conductors with uniform cross-section
can transmit TEM waves. Low loss conductors are commonly approximated as
lossless.
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Cascade of T-Lines (I)

Z01 Z02

z = 0

i1 i2

v1 v2

Consider the junction between two transmission lines Z01 and Z02

At the interface z = 0, the boundary conditions are that the voltage/current has
to be continuous

v+1 + v−1 = v+2

(v+1 − v−1 )/Z01 = v+2 /Z02
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Cascade of T-Lines (II)

Solve these equations in terms of v+1
The reflection coefficient has the same form (easy to remember)

Γ =
v−1
v+1

=
Z02 − Z01

Z01 + Z02

The second line looks like a load impedance of value Z02

Z01 Z02

z = 0

i1

+
v1−
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Transmission Coefficient

The wave launched on the new transmission line at the interface is given by

v+2 = v+1 + v−1 = v+1 (1 + Γ) = τv+1

This “transmitted” wave has a coefficient

τ = 1 + Γ =
2Z02

Z01 + Z02

Note the incoming wave carries a power

Pin =
|v+1 |2
2Z01
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Conservation of Energy

The reflected and transmitted waves likewise carry a power of

Pref =
|v−1 |2
2Z01

= |Γ|2 |v
+
1 |2

2Z01
Ptran =

|v+2 |2
2Z02

= |τ |2 |v
+
1 |2

2Z02

By conservation of energy, it follows that

Pin = Pref + Ptran

1

Z02
τ2 +

1

Z01
Γ2 =

1

Z01

You can verify that this relation holds!
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Bounce Diagram

Consider the bounce
diagram for the
following
arrangement:

Z01 Z02

Rs

RL

!1 !2

T
i

m
e

Space

td

2td

3td

4td

5td

6td

v+
1

τ1v+
1

ΓLτ1v
+
1

ΓLτ1τ2v
+
1

ΓsΓLτ1τ2v+
1

Γjv
+
1

ΓjΓsv
+
1

ΓsΓ
2
jv

+
1

1 1 + 2

td1
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Junction of Parallel T-Lines

Z01

Z02

z = 0

Z03

Again invoke voltage/current continuity at the interface

v+1 + v−1 = v+2 = v+3 v+1 − v−1
Z01

=
v+2
Z02

+
v+3
Z02

But v+2 = v+3 , so the interface just looks like the case of two transmission lines
Z01 and a new line with char. impedance Z01||Z02.
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Reactive Terminations (I)

Rs

Vs

!

Z0, td L

Let’s analyze the problem intuitively first

When a pulse first “sees” the inductance at the load, it looks like an open so
Γ0 = +1

As time progresses, the inductor looks more and more like a short! So Γ∞ = −1
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Reactive Terminations (II)

So intuitively we might expect the reflection coefficient to look like this:

1 2 3 4 5

-1

-0.5

0.5

1

t/ τ

The graph starts at +1 and ends at −1. In between we’ll see that it goes through
exponential decay (1st order ODE)
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Reactive Terminations (III)

Do equations confirm our intuition?

vL = L
di

dt
= L

d

dt

(
v+

Z0
− v−

Z0

)

And the voltage at the load is given by v+ + v−

v− +
L

Z0

dv−

dt
=

L

Z0

dv+

dt
− v+

The right hand side is known, it’s the incoming waveform
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Solution for Reactive Term

For the step response, the derivative term on the RHS is zero at the load

v+ =
Z0

Z0 + Rs
Vs

So we have a simpler case dv+

dt = 0

We must solve the following equation

v− +
L

Z0

dv−

dt
= −v+

For simplicity, assume at t = 0 the wave v+ arrives at load
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Laplace Domain Solution I

In the Laplace domain

V−(s) +
sL

Z0
V−(s)− L

Z0
v−(0) = −v+/s

Solve for reflection V−(s)

V−(s) =
v−(0)L/Z0

1 + sL/Z0
− v+

s(1 + sL/Z0)

Break this into basic terms using partial fraction expansion

−1

s(1 + sL/Z0)
=

−1

1 + sL/Z0
+

L/Z0

1 + sL/Z0
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Laplace Domain Solution (II)

Invert the equations to get back to time domain t > 0

v−(t) = (v−(0) + v+)e−t/τ − v+

Note that v−(0) = v+ since initially the inductor is an open

So the reflection coefficient is

Γ(t) = 2e−t/τ − 1

The reflection coefficient decays with time constant L/Z0
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