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Oscillators

An oscillator is an essential component in communication systems, providing a
carrier frequency for RF transmission, a local oscillator (LO) for up- and
down-conversion, and a timing reference for data sampling and re-sampling.

Before the advent of electronic oscillators, sinusoidal signals were generated from
motors (which limited the highest frequency due to mechanical resonance), or
from arcs and LC tanks, which were of limited utility.

Wikipedia: At least six researchers independently made the vacuum tube feedback
oscillator discovery ... In the summer of 1912, Edwin Armstrong observed oscillations
in audion radio receiver circuits and went on to use positive feedback in his invention
of the regenerative receiver. German Alexander Meissner independently discovered
positive feedback and invented oscillators in March 1913. Irving Langmuir at General
Electric observed feedback in 1913. Fritz Lowenstein may have preceded the others
with a crude oscillator in late 1911...
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Electronic (Feedback) Oscillators
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An oscillator is an autonomous circuit that converts DC power into a periodic
waveform. We will initially restrict our attention to a class of oscillators that
generate a sinusoidal waveform.

The period of oscillation is determined by a high-Q LC tank or a resonator
(crystal, cavity, T-line, etc.). An oscillator is characterized by its oscillation
amplitude (or power), frequency, “stability”, phase noise, and tuning range.
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Oscillators (cont)

Disturbance

Generically, a good oscillator is stable in that its frequency and amplitude of
oscillation do not vary appreciably with temperature, process, power supply, and
external disturbances.

The amplitude of oscillation is particularly stable, always returning to the same
value (even after a disturbance).
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Timing Jitter
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Real oscillators don’t have a precise period of oscillation. The period varies due to
phase noise or timing jitter. The phase of the signal increases ωt + ϕn increases
linearly but has a small noise component ϕn that causes jitter.

In the figure above, the noise is exaggerated greatly. In practice, this slight
deviation will only be observed if millions of cycles of the oscillator are overlaid
(using a digital oscilloscope for example).
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Phase Noise
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Due to noise, a real
oscillator does not have a
delta-function power
spectrum, but rather a
very sharp peak at the
oscillation frequency.

The amplitude drops very
quickly, though, as one
moves away from the
center frequency. E.g. a
cell phone oscillator has a
phase noise that is 100dB
down at an offset of only
0.01% from the carrier!
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An LC Tank “Oscillator”

eαt cos ω0t

Note that an LC tank alone is not a good oscillator. Due to loss, no matter how
small, the amplitude of the oscillator decays.

Even a very high Q oscillator can only sustain oscillations for about Q cycles. For
instance, an LC tank at 1GHz has a Q ∼ 20, can only sustain oscillations for
about 20ns.

Even a resonator with high Q ∼ 106, will only sustain oscillations for about 1ms.
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Feedback Perspective
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Many oscillators can be viewed as feedback systems. The oscillation is sustained
by feeding back a fraction of the output signal, using an amplifier to gain the
signal, and then injecting the energy back into the tank. The transistor “pushes”
the LC tank with just about enough energy to compensate for the loss.
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Negative Resistance Perspective

Active
Circuit

Negative
Resistance

LC Tank

Another perspective is to view the active device as a negative resistance generator.
In steady state, the losses in the tank due to conductance G are balanced by the
power drawn from the active device through the negative conductance −G .
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Reflection Coefficient Perspective

Open or Short |Γ| > 1

Z0, γ = α + jβ

A completely equivalent way to see the negative resistance argument is to think of
the reflection coefficient.
Consider launching a wave down a transmission line. We know that the wave will
have a period equal the round trip delay td . If we inject a wave into a
transmission line resonator, the signal is attenuated due to the line loss and
decays exponentially.
If we can create a load with |Γ| > 1 and the proper phase, then the wave will
travel back and forth along the transmission line without any loss. A negative
resistance is thus required.

Γ =
Z − Z0

Z + Z0
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Feedback Approach

si(s) so(s)
+

−
a(s)
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Consider an ideal feedback system with forward gain a(s) and feedback factor
f (s). The closed-loop transfer function is given by

H(s) =
a(s)

1 + a(s)f (s)
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Feedback Example

f

a(s) =
a
1/3
0

(1 + sτ)

a(s)

As an example, consider a forward gain transfer function with three identical real
negative poles with magnitude |ωp| = 1/τ and a frequency independent feedback
factor f

a(s) =
a0

(1 + sτ)3

Deriving the closed-loop gain, we have

H(s) =
a0

(+sτ)3 + a0f
=

K1

(1− s/s1)(1− s/s2)(1− s/s3)
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Poles of Closed-Loop Gain

Solving for the poles
(1 + sτ)3 = −a0f

1 + sτ = (−a0f )
1
3 = (a0f )

1
3 (−1)

1
3

(−1)
1
3 = −1, e j60

◦
, e−j60◦

The poles are therefore

s1, s2, s3 =
−1− (a0f )

1
3

τ
,
−1 + (a0f )

1
3 e±j60◦

τ
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Root Locus
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If we plot the poles on the
s-plane as a function of
the DC loop gain
T0 = a0f we generate a
root locus

For a0f = 8, the poles are
on the jω-axis with value

s1 = −3/τ

s2,3 = ±j
√
3/τ

For a0f > 8, the poles
move into the right-half
plane (RHP)
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Natural Response

Given a transfer function

H(s) =
K

(s − s1)(s − s2)(s − s3)
=

a1
s − s1

+
a2

s − s2
+

a3
s − s3

The total response of the system can be partitioned into the natural response and
the forced response

s0(t) = f1(a1e
s1t + a2e

s2t + a3e
s3t) + f2(si (t))

where f2(si (t)) is the forced response whereas the first term f1() is the natural
response of the system, even in the absence of the input signal. The natural
response is determined by the initial conditions of the system.
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Real LHP Poles

e−αt

Stable systems have all poles in the left-half plane (LHP).

Consider the natural response when the pole is on the negative real axis, such as
s1 for our examples.

The response is a decaying exponential that dies away with a time-constant
determined by the pole magnitude.
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Complex Conjugate LHP Poles

Since s2,3 are a complex
conjugate pair

s2, s3 = σ ± jω0

We can group these
responses since a3 = a2
into a single term

a2e
s2t+a3e

s3t = Kae
σt cosω0t

eαt cos ω0t

When the real part of the complex conjugate pair σ is negative, the response also
decays exponentially.
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Complex Conjugate Poles (RHP)

When σ is positive (RHP),
the response is an
exponential growing
oscillation at a frequency
determined by the
imaginary part ω0

Thus we see for any
amplifier with three
identical poles, if feedback
is applied with loop gain
T0 = a0f > 8, the
amplifier will oscillate.

αte cos ω0t
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Frequency Domain Perspective

1

τ

a0f = 8

Closed Loop Transfer Function

In the frequency domain
perspective, we see that
a feedback amplifier has
a transfer function

H(jω) =
a(jω)

1 + a(jω)f

If the loop gain a0f = 8, then we have with purely imaginary poles at a frequency
ωx =

√
3/τ where the transfer function a(jωx)f = −1 blows up. Apparently, the

feedback amplifier has infinite gain at this frequency.
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Oscillation Build Up

start-up region steady-state region

In a real oscillator, the amplitude of oscillation initially grows exponentially as our
linear system theory predicts. This is expected since the oscillator amplitude is
initially very small and such theory is applicable. But as the oscillations become
more vigorous, the non-linearity of the system comes into play.

We will analyze the steady-state behavior, where the system is non-linear but
periodically time-varying.
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Example LC Oscillator

vo

vi

n : 1
The emitter resistor is
bypassed by a large capacitor
at AC frequencies.

The base of the transistor is
conveniently biased through
the transformer windings.

The LC oscillator uses a transformer for feedback. Since the amplifier has a phase
shift of 180◦, the feedback transformer needs to provide an additional phase shift
of 180◦ to provide positive feedback.
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AC Equivalent Circuit
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vi
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At resonance, the AC equivalent circuit can be simplified. The transformer
winding inductance L resonates with the total capacitance in the circuit. RT is
the equivalent tank impedance at resonance.
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Small Signal Equivalent Circuit

roCin gmvin

+
vin

−
Rin Co

CLRL

L

n : 1

The forward gain is given by a(s) = −gmZT (s), where the tank impedance ZT

includes the loading effects from the input of the transistor

RT = r0||RL||n2Ri

C = Co + CL +
Ci

n2
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Open-Loop Transfer Function

The tank impedance is therefore

ZT (s) =
1

sC + 1
RT

+ 1
Ls

=
Ls

1 + s2LC + sL/RT

The loop gain is given by

af (s) =
−gmRT

n

L
RT

s

1 + L
RT

s + s2LC

The loop gain at resonance is

Aℓ =
−gmRT

n
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Closed-Loop Transfer Function

The closed-loop transfer function is given by

H(s) =
−gmRT

L
RT

s

1 + s2LC + s L
RT

(1− gmRT
n )

Where the denominator can be written as a function of Aℓ

H(s) =
−gmRT

L
RT

s

1 + s2LC + s L
RT

(1− Aℓ)

Note that as n → ∞, the feedback loop is broken and we have a tuned amplifier.
The pole locations are determined by the tank Q.
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Oscillator Closed-Loop Gain vs Aℓ

Aℓ < 1

Aℓ = 1

ω0 =

√
1

LC

Closed Loop Transfer Function

If Aℓ = 1, then the denominator loss term cancels out and we have two complex
conjugate imaginary axis poles

1 + s2LC = (1 + sj
√
LC )(1− sj

√
LC )
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Root Locus for LC Oscillator

For a second order transfer function, notice that the magnitude of the poles is
constant, so they lie on a circle in the s-plane

s1, s2 =
−a

2b
± a

2b

√
1− 4b

a2
=

−a

2b
± j

a

2b

√
4b
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√

a2

4b2
+

a2

4b2
(
4b

a2
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√
1

b
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Root Locus (cont)
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We see that for Aℓ = 0, the poles are determined by the tank Q and lie in the
LHP. As Aℓ is increased, the action of the positive feedback is to boost the gain of
the amplifier and to decrease the bandwidth. Eventually, as Aℓ = 1, the loop gain
becomes infinite in magnitude.
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Review: Role of Loop Gain

The behavior of the circuit is determined largely by Aℓ, the loop gain at DC and
resonance. When Aℓ = 1, the poles of the system are on the jω axis,
corresponding to constant amplitude oscillation.

When Aℓ < 1, the circuit oscillates but decays to a quiescent steady-state.

When Aℓ > 1, the circuit begins oscillating with an amplitude which grows
exponentially. Eventually, we find that the steady state amplitude is fixed.
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Steady-State Analysis

start-up region steady-state region

To find the steady-state behavior of the circuit, we will make several simplifying
assumptions. The most important assumption is the high tank Q assumption (say
Q > 10), which implies the output waveform vo is sinusoidal.

Vω2 ≈
1

jωC
Iω2

Since the feedback network is linear, the input waveform vi = vo/n is also
sinusoidal.

We may therefore apply the large-signal periodic steady-state analysis to the
oscillator. For the BJT, we can use the modified Bessel functions.
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Steady-State Waveforms

vo

vi

VCC
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The collector current is not sinusoidal, due to the large signal drive.

The output voltage,though, is sinusoidal and given by

vo ≈ Iω1ZT (ω1) = GmZT vi
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Steady State Equations

But the input waveform is a scaled version of the output

vo = GmZT
vo
n

=
GmZT

n
vo

The above equation implies that

GmZT

n
≡ 1

Or that the loop gain in steady-state is unity and the phase of the loop gain is
zero degrees (an exact multiple of 2π)∣∣∣∣

GmZT

n

∣∣∣∣ ≡ 1 ∠
GmZT

n
≡ 0◦
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Large Signal Gm

Recall that the small-signal loop gain is given by

|Aℓ| =
∣∣∣∣
gmZT

n

∣∣∣∣

Which implies a relation between the small-signal start-up transconductance and
the steady-state large-signal transconductance

∣∣∣∣
gm
Gm

∣∣∣∣ = Aℓ

Notice that gm and Aℓ are design parameters under our control, set by the choice
of bias current and tank Q. The steady state Gm is therefore also fixed by initial
start-up conditions.
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Large Signal Gm (BJT)
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To find the oscillation amplitude we need to find the input voltage drive to
produce Gm.
For a general non-linearity, we need to generate this curve using numerical
integration (Fourier Series).
The large signal Gm for an arbitrary non-linearity F (·) is given by

Gm = Iω1/Vi =
1

π

∫ 2π

0
F (Vi cos(ωt)) cos(ωt)dt
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Large Signal Gm (BJT cont)

For a BJT, we found that under the constraint that the bias current is fixed

Iω1 =
2I1(b)

I0(b)
IQ = Gmvi = Gmb

kT

q

Thus the large-signal Gm is given by

Gm =
2I1(b)

bI0(b)

qIQ
kT

=
2I1(b)

bI0(b)
gm

Gm

gm
=

2I1(b)

bI0(b)
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Large Signal Gm (Differential Pair)
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For a differential pair (BJT), we can use numerical integration to find the ratio of
the large signal Gm to the small-signal gm. The nth harmonic (single-ended)
output is given by:

Iωn/IEE =

∫ 2π

0

− cos(nt)

π
(
eb cos(t) + 1

)dt
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Stability (Intuition)

Here’s an intuitive argument for how the oscillator reaches a stable oscillation
amplitude. Assume that initially Al > 1 and oscillations grow. As the amplitude
of oscillation increases, though, the Gm of the transistor drops, and so effectively
the loop gain drops.

As the loop gain drops, the poles move closer to the jω axis. This process
continues until the poles hit the jω axis, after which the oscillation ensues at a
constant amplitude and Aℓ = 1.
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Intuition (cont)

A < 1A > 1

Vamp > VoVamp < Vo

Gm(Vo)ZT (ω1)

n
= 1

To see how this is a stable point, consider what
happens if somehow the oscillation amplitude
increases.

With increasing amplitude over Vo , we know
that Aℓ < 1 due to the compressive
characteristics of the oscillator. This causes the
amplitude to decay.

If the oscillation amplitude were to decay below Vo , the Gm increases and this
causes the loop gain to grow. Thus the system also rolls back to the point where
Aℓ = 1.

Up to now we have only considered the Gm non-linearity as a possible limiting
mechanism. What happens, for example, if we do not limit the bias current of a
device?
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Other Limiting Mechanisms

Ro(Vo)

Vo

Vsat

Current Limited Region Voltage Limited Region

The Gm curve may become expansive
and the oscillation amplitude may not
limit from Gm but from other
mechanism.

If the oscillation amplitude causes the voltage at the drain of a device to grow
sufficiently large, the device may enter “triode” region (or saturation for a bipolar)
and thus the output resistance non-linearity will limit the amplitude.

In the literature, operation in the Gm limiting region is sometimes called the
“current limited” regime, whereas operation in the output impedance limiting
regime is called the “voltage limited” regime.
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BJT Oscillator Design

Say we desire an oscillation amplitude of v0 = 100mV at a certain oscillation
frequency ω0.

We begin by selecting a loop gain Aℓ > 1 with sufficient margin. Say Aℓ = 3.

We also tune the LC tank to ω0, being careful to include the loaded effects of the
transistor (ro , Co , Cin, Rin)

We can estimate the required first harmonic current from

Iω0 =
vo
R ′
T
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Design (cont)

This is an estimate because the exact value of RT is not known until we specify
the operating point of the transistor. But a good first order estimate is to neglect
the loading and use R ′

T

We can now solve for the bias point from

Iω1 =
2I1(b)

I0(b)
IQ

b is known since it’s the oscillation amplitude normalized to kT/q and divided by
n. The above equation can be solved graphically or numerically.

Once IQ is known, we can now calculate R ′′
T and iterate until the bias current

converges to the final value.
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Squegging

Squegging is a parasitic oscillation in the bias circuitry of the amplifier.

It can be avoided by properly sizing the emitter bypass capacitance

CE ≤ nCT
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Common Base Oscillator

vo

vi

Another BJT oscillator uses the common-base transistor. Since there is no phase
inversion in the amplifier, the transformer feedback is in phase.

Since we don’t need phase inversion, we can use a simpler feedback consisting of
a capacitor divider.
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Colpitts Oscillator

The cap divider works at higher frequencies. Under the cap divider approximation

f ≈ C1

C1 + C ′
2

=
1

n
n = 1 +

C ′
2

C1

C ′
2 includes the loading from the transistor and current source.
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Colpitts Bias

Since the bias current is held constant by a current source IQ or a large resistor,
the analysis is identical to the BJT oscillator with transformer feedback. Note the
output voltage is divided and applied across vBE just as before.

45 / 53



Colpitts Family

If we remove the explicit ground connection on the oscillator, we have the
template for a generic oscillator.

It can be shown that the Colpitts family of oscillator never squegg.
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CE and CC Oscillators

If we ground the emitter, we have a new oscillator topology, called the Pierce
Oscillator. Note that the amplifier is in CE mode, but we don’t need a
transformer!

Likewise, if we ground the collector, we have an emitter follower oscillator.

A fraction of the tank resonant current flows through C1,2. In fact, we can use
C1,2 as the tank capacitance.
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Pierce Oscillator

Iω1

If we assume that the current through C1,2 is larger than the collector current
(high Q), then we see that the same current flows through both capacitors. The

voltage at the input and output is therefore vo = Iω1

1

jωC1

vi = −Iω1

1

jωC2
or

vo
vi

= n =
C2

C1
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Pierce Bias

A current source or large resistor can bias the Pierce oscillator.

Since the bias current is fixed, the same large signal oscillator analysis applies.
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Common-Collector Oscillator

Note that the collector can be connected to a resistor without changing the
oscillator characteristics. In fact, the transistor provides a buffered output for
“free”.
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Clapp Oscillator

CB

C1

C2

RB

The common-collector oscillator shown above uses a large capacitor CT to block
the DC signal at the base. RB is used to bias the transistor.

If the shunt capacitor CT is eliminated, then the capacitor CB can be used to
resonate with L and the series combination of C1 and C2. This is a series resonant
circuit.
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Relaxation Oscillator

Vout

C R

RR

Instead of using an LC tanks as the reference frequency, a relaxation oscillator
uses an electronic delay element (RC or I and R).

Suppose that the output is railed at the positive supply. The capacitor C is
charged through a resistor until the reference level at V+ is crossed (VDD/2), at
which point the output transitions to the negative rail (V− > V+), and C is
discharged until it reaches the lower reference (−VSS/2). Then the cycle repeats.
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Ring Oscillator

In CMOS technology, ring oscillators are ubiquitous. If inverters are used, an odd
number of stages will oscillate (unstable) and the oscillation period is twice the
delay of the line.

Differential versions can be built with an even number of stages by inverting the
phase.

The oscillation frequency can be controlled by varying the delay of each element
using a “current starved” topology.
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