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The Origin of Distortion
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Introduction to Distortion

si

so

si so

Linear Region

Up to now we have
treated amplifiers as
small-signal linear circuits.
Since transistors are
non-linear, this
assumption is only valid
for extremeley small
signals.

Consider a class of memoryless non-linear amplifiers. In other words, let’s neglect
energy storage elements.

This is the same as saying the output is an instantaneous function of the input.
Thus the amplifier has no memory.
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Distortion Analaysis Assumptions

We also assume the input/output description is sufficiently smooth and
continuous as to be accurately described by a power series

so = a1si + a2s
2
i + a3s

3
i + . . .

For instance, for a BJT (Si,
SiGe, GaAs) operated in
forward-active region, the
collector current is a smooth
function of the voltage VBE

IC

IQ

IC = ISe
qVBE
kT

VBE
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BJT Distortion

IC − IQ

Vi − VBE,Q

ideal response

We shift the origin by eliminating the DC signals, io = IC − IQ . The input signal is
then applied around the DC level VBE ,Q .

Note that an ideal amplifier has a perfectly linear line.
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JFET Distortion
IDS

VGS

VP
0

JFETs are sometimes used in RF circuits. The I-V relation is also approximately
square law

ID = IDSS

(
1− VGS

VP

)2

The gate current (junction leakage) is typically very small IG ∼ 1012A. So for all
practical purposes, Ri = ∞.
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MOSFET Distortion

IDS

VGSVT
VGS,Q

IDS,Q

IDS

VGS

forward active regime

The long-channel device also follows the square law relation (neglecting bulk
charge effects)

ID = 1
2µCox

W

L
(VGS − Vt)

2 (1 + λVDS)

This is assuming the device does not leave the forward active (saturation) regime.
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MOSFET Model

Short-channel devices are even more difficult due to velocity saturation and field
dependent mobility. A simple model for a transistor in forward active region is
given by (neglecting output resistance)

ID = 1
2µCox

W

L

(VGS − Vt)
2

1 + θ(VGS − Vt)

Note that the device operation near threshold is not captured by this equation.
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Single Equation MOSFET Model

The I-V curve of a MOSFET in moderate and weak inversion is easy to describe
in a “piece-meal” fashion, but difficult to capture with a single equation. One
approximate single-equation relationship often used is given by

ID = 1
2µCox

W

L

X 2

1 + θX

where X is given by

X = 2η
kT

q
ln

(
1 + e

q(VGS−Vt )

2ηkT

)
If the exponential term dominates, then X = VGS − Vt , which is true for
operation in strong inversion. Otherwise, ln(1 + a) ≈ a, which makes the model
mimic the weak-inversion “bipolar” exponential characteristic.
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Differential Pair

IC1 IC2

+
Vi

2
−

−
Vi

2
+

IEE

The differential pair is an im-
portant analog and RF building
block.

For a BJT diff pair, we have Vi = VBE1 − VBE2

IC1,2 = ISe
qVBE1,2

kT

The sum of the collector currents are equal to the current source IC1 + IC2 = IEE
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BJT Diff Pair

Io

Vi

IEE

−IEE

The ideal BJT diff pair I-V relationship (neglecting base and emitter resistance) is
give by

Io = IC1 − IC2 = αIEE tanh
qVi

2kT

Notice that the output current saturates for large input voltages
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Modeling Amplifiers with a Power Series
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Power Series Relation

For a general circuit, let’s represent this behavior with a power series

so = a1si + a2s
2
i + a3s

3
i + . . .

a1 is the small signal gain

The coefficients a1,a2,a3,. . . are independent of the input signal si but they
depend on bias, temperature, and other factors.
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Harmonic Distortion

Assume we drive the amplifier with a time harmonic signal at frequency ω1

si = S1 cosω1t

A linear amplifier would output so = a1S1 cosω1t whereas our amplifier generates

so = a1S1 cosω1t + a2S
2
1 cos

2 ω1t + a3S
3
1 cos

3 ω1t + . . .

or

so = a1S1 cosω1t +
a2S

2
1

2
(1 + cos 2ω1t) +

a3S
3
1

4
(cos 3ω1t + 3 cosω1t) + . . .
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Harmonic Distortion (cont)

The term a1s1 cosω1t is the wanted signal.

Higher harmonics are also generated. These are unwanted and thus called
“distortion” terms. We already see that the second-harmonic cos 2ω1t and third
harmonic cos 3ω1t are generated.

Also the second order non-linearity produces a DC shift of 1
2a2S

2
1 .

The third order generates both third order distortion and more fundamental. The
sign of a1 and a3 determine whether the distortion product a3S

3
1
3
4 cosω1t adds or

subtracts from the fundamental.

If the signal adds, we say there is gain expansion. If it subtracts, we say there is
gain compression.
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Second Harmonic Disto Waveforms

fundamental

second harmonic

The figure above demonstrates the waveform distortion due to second harmonic
only.
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Third Harmonic Distortion Waveform

fundamental

third harmonic

The above figure shows the effects of the third harmonic, where we assume the
third harmonic is in phase with the fundamental.
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Third Harmonic Waveform (cont)

fundamental

third harmonic

The above figure shows the effects of the third harmonic, where we assume the
third harmonic is out of phase with the fundamental.
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General Distortion Term

Consider the term cosn θ = 1
2n

(
e jθ + e−jθ

)n
. Using the Binomial formula, we can

expand to

=
1

2n

n∑
k=0

(
n

k

)
e jkθe−j(n−k)θ

For n = 3

=
1

8

((
3

0

)
e−j3θ +

(
3

1

)
e jθe−j2θ +

(
3

2

)
e j2θe−jθ +

(
3

3

)
e j3θ

)

=
1

8

(
e−j3θ + e j3θ

)
+

1

8
3
(
e jθ + e−jθ

)
=

1

4
cos 3θ +

3

4
cos θ
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General Distortion Term (cont)

We can already see that for an odd power, we will see a nice pairing up of positive
and negative powers of exponentials

For the even case, the middle term is the unpaired DC term(
2k

k

)
e jkθe−jkθ =

(
2k

k

)
So only even powers in the transfer function can shift the DC operation point.

The general term in the binomial expansion of (x + x−1)n is given by(
n

k

)
xn−kx−k =

(
n

k

)
xn−2k
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General Distortion Term (cont)

The term
(n
k

)
xn−2k generates every other harmonic.

If n is even, then only even harmonics are generated. If n is odd, likewise, only
odd harmonics are generated.

Recall that an “odd” function f (−x) = −f (x) (anti-symmetric) has an odd power
series expansion

f (x) = a1x + a3x
3 + a5x

5 + . . .

Whereas an even function, g(−x) = g(x), has an even power series expansion

g(x) = a0 + a2x
2 + a4x

4 + . . .
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Output Waveform

In general, then, the output waveform is a Fourier series

vo = V̂o1 cosω1t + V̂o2 cos 2ω1t + V̂o3 cos 3ω1t + . . .

V̂o

V̂i

V̂o2

V̂o3

100mV

10mV1mV100µV10µV1µV

10mV

1mV

100µV

10µV

1µV

Gain Compression

Higher Order 
Distortion Products
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Harmonic Distortion Metrics
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Fractional Harmonic Distortion

The fractional second-harmonic distortion is a commonly cited metric

HD2 =
ampl of second harmonic

ampl of fund

If we assume that the square power dominates the second-harmonic

HD2 =
a2

S2
1
2

a1S1

or
HD2 =

1
2

a2
a1

S1
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Third Harmonic Distortion

The fractional third harmonic distortion is given by

HD3 =
ampl of third harmonic

ampl of fund

If we assume that the cubic power dominates the third harmonic

HD3 =
a3

S3
1
4

a1S1

or

HD3 =
1

4

a3
a1

S2
1
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Output Referred Harmonic Distortion

In terms of the output signal Som, if we again neglect gain
expansion/compression, we have Som = a1S1

HD2 =
1

2

a2
a21

Som

HD3 =
1

4

a3
a31

S2
om

On a dB scale, the second harmonic increases linearly with a slope of one in terms
of the output power whereas the thrid harmonic increases with a slope of 2.
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Signal Power

Recall that a general memoryless non-linear system will produce an output that
can be written in the following form

vo(t) = V̂o1 cosω1t + V̂o2 cos 2ω1t + V̂o3 cos 3ω1t + . . .

By Parseval’s theorem, we know the total power in the signal is related to the
power in the harmonics∫

T
v2(t)dt =

∫
T

∑
j

V̂oj cos(jω1t)
∑
k

V̂ok cos(kω1t)dt

=
∑
j

∑
k

∫
T
V̂oj cos(jω1t)V̂ok cos(kω1t)dt
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Power in Distortion

By the orthogonality of the harmonics, we obtain Parseval’s Them∫
T
v2(t)dt =

∑
j

∑
k

1
2δjk V̂oj V̂ok = 1

2

∑
j

V̂ 2
oj

The power in the distortion relative to the fundamental power is therefore given by

Power in Distortion

Power in Fundamental
=

V 2
o2

V 2
o1

+
V 2
o3

V 2
o1

+ · · ·

= HD2
2 + HD2

3 + HD2
4 + · · ·
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Total Harmonic Distortion

We define the Total Harmonic Distortion (THD) by the following expression

THD =
√
HD2

2 + HD2
3 + · · ·

Based on the particular application, we specify the maximum tolerable THD

Telephone audio can be pretty distorted (THD < 10%)

High quality audio is very sensitive (THD < 1% to THD < .001%)

Video is also pretty forgiving, THD < 5% for most applications

Analog Repeaters < .001%. RF Amplifiers < 0.1%
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Intermodulation and Crossmodulation Distortion
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Intermodulation Distortion

So far we have characterized a non-linear system for a single tone. What if we
apply two tones

Si = S1 cosω1t + S2 cosω2t

So = a1Si + a2S
2
i + a3S

3
i + · · ·

= a1S1 cosω1t + a1S2 cosω2t + a2(Si )
2 + a3(Si )

3 + · · ·
The second power term gives

a2S
2
1 cos

2 ω1t + a2S
2
2 cos

2 ω2t + 2a2S1S2 cosω1t cosω2t

= a2
S2
1

2
(cos 2ω1t + 1) + a2

S2
2

2
(cos 2ω2t + 1) +

a2S1S2 (cos(ω1 + ω2)t − cos(ω1 − ω2)t)
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Second Order Intermodulation

The last term cos(ω1 ± ω2)t is the second-order intermodulation term

The intermodulation distortion IM2 is defined when the two input signals have
equal amplitude Si = S1 = S2

IM2 =
Amp of Intermod

Amp of Fund
=

a2
a1

Si

Note the relation between IM2 and HD2

IM2 = 2HD2 = HD2 + 6dB
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Practical Effects of IM2

This term produces distortion at a lower frequency ω1 − ω2 and at a higher
frequency ω1 + ω2

Example: Say the receiver bandwidth is from 800MHz− 2.4GHz and two
unwanted interfering signals appear at 800MHz and 900MHz.

Then we see that the second-order distortion will produce distortion at 100MHz
and 1.7GHz. Since 1.7GHz is in the receiver band, signals at this frequency will
be corrupted by the distortion.

A weak signal in this band can be “swamped” by the distortion.

Apparently, a “narrowband” system does not suffer from IM2? Or does it ?
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Low-IF Receiver

In a low-IF or direct conversion receiver, the signal is down-converted to a low
intermediate frequency fIF

Since ω1 − ω2 can potentially produce distortion at low frequency, IM2 is very
important in such systems

Example: A narrowband system has a receiver bandwidth of 1.9GHz - 2.0GHz. A
sharp input filter eliminates any interference outside of this band. The IF
frequency is 1MHz

Imagine two interfering signals appear at f1 = 1.910GHz and f2 = 1.911GHz.
Notice that f2 − f1 = fIF

Thus the output of the amplifier/mixer generate distortion at the IF frequency,
potentially disrupting the communication.
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Cubic IM

Now let’s consider the output of the cubic term

a3s
3
i = a3(S1 cosω1t + S2 cosω2t)

3

Let’s first notice that the first and last term in the expansion are the same as the
cubic distortion with a single input

a3S
3
1,2

4
(cos 3ω1,2t + 3 cosω1,2t)

The cross terms look like (
3

2

)
a3S1S

2
2 cosω1t cos

2 ω2t
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Third Order IM

Which can be simplified to

3 cosω1t cos
2 ω2t =

3

2
cosω1t(1 + cos 2ω2t) =

=
3

2
cosω1t +

3

4
cos(2ω2 ± ω1)

The interesting term is the intermodulation at 2ω2 ± ω1

By symmetry, then, we also generate a term like

a3S
2
1S2

3

4
cos(2ω1 ± ω2)

Notice that if ω1 ≈ ω2, then the intermodulation 2ω2 − ω1 ≈ ω1
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Inband IM3 Distortion

ω1 ω2ω3

2ω2 − ω12ω1 − ω2

S(ω)

ω

Interfering Signals
wanted

distortion product

Now we see that even if the system is narrowband, the output of an amplifier can
contain in band intermodulation due to IM3.

This is in contrast to IM2 where the frequency of the intermodulation was at a
lower and higher frequency. The IM3 frequency can fall in-band for two in-band
interferer
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Definition of IM3

We define IM3 in a similar manner for Si = S1 = S2

IM3 =
Amp of Third Intermod

Amp of Fund
=

3

4

a3
a1

S2
i

Note the relation between IM3 and HD3

IM3 = 3HD3 = HD3 + 10dB
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Complete Two-Tone Response

ω1 ω2

2ω2 − ω12ω1 − ω2

S(ω)

ω

3ω2 − 2ω13ω1 − 2ω2

2ω1 2ω2

ω1 + ω2
ω2 − ω1

3ω2 − ω13ω1 − ω2

3ω13ω2

2ω1 + ω2 2ω2 + ω1

2ω2 − 2ω1

ω2 − ω1

We have so far identified the harmonics and IM2 and IM3 products

A more detailed analysis shows that an order n non-linearity can produce
intermodulation at frequencies jω1 ± kω2 where j + k = n

All tones are spaced by the difference ω2 − ω1
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Examples
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Distortion of BJT Amplifiers

+
vs
−

RL

vo

VCC

Consider the CE BJT
amplifier shown. The
biasing is omitted for
clarity.

The output voltage is simply

Vo = VCC − ICRC

Therefore the distortion is generated by IC alone. Recall that

IC = ISe
qVBE/kT
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BJT CE Distortion (cont)

Now assume the input VBE = vi + VQ , where VQ is the bias point. The current is
therefore given by

IC = ISe
VQ
VT︸ ︷︷ ︸

IQ

e
vi
VT

Using a Taylor expansion for the exponential

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + · · ·

IC = IQ(1 +
vi
VT

+
1

2

(
vi
VT

)2

+
1

6

(
vi
VT

)3

+ · · · )
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BJT CE Distortion (cont)

Define the output signal ic = IC − IQ

ic =
IQ
VT

vi +
1

2

( q

kT

)2
IQv

2
i +

1

6

( q

kT

)3
IQv

3
i + · · ·

Compare to So = a1Si + a2S
2
i + a3S

3
i + · · ·

a1 =
qIQ
kT

= gm

a2 =
1

2

( q

kT

)2
IQ

a3 =
1

6

( q

kT

)3
IQ
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Example: BJT HD2

For any BJT (Si, SiGe, Ge, GaAs), we have the following result

HD2 =
1

4

qv̂i
kT

where v̂i is the peak value of the input sine voltage

For v̂i = 10mV, HD2 = 0.1 = 10%

We can also express the distortion as a function of the output current swing îc

HD2 =
1

2

a2
a21

Som =
1

4

îc
IQ

For îc
IQ

= 0.4, HD2 = 10%
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Example: BJT IM3

Let’s see the maximum allowed signal for IM3 ≤ 1%

IM3 =
3

4

a3
a1

S2
1 =

1

8

(
qv̂i
kT

)2

Solve v̂i = 7.3mV. That’s a pretty small voltage. For practical applications we’d
like to improve the linearity of this amplifier.
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Example: Disto in Long-Ch. MOS

vi

VQ

ID = IQ + io

ID = 1
2µCox

W

L
(VGS−VT )

2

io+IQ = 1
2µCox

W

L
(VQ+vi−VT )

2

Ignoring the output impedance we have

= 1
2µCox

W

L

{
(VQ − VT )

2 + v2i + 2vi (VQ − VT )
}

= IQ︸︷︷︸
dc

+µCox
W

L
vi (VQ − VT )︸ ︷︷ ︸
linear

+ 1
2µCox

W

L
v2i︸ ︷︷ ︸

quadratic
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Ideal Square Law Device

An ideal square law device only generates 2nd order distortion

io = gmvi +
1
2µCox

W

L
v2i

a1 = gm

a2 =
1
2µCox

W

L
= 1

2

gm
VQ − VT

a3 ≡ 0

The harmonic distortion is given by

HD2 =
1

2

a2
a1

vi =
1

4

gm
VQ − VT

1

gm
vi =

1

4

vi
VQ − VT

HD3 = 0
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Real MOSFET Device

0
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The real MOSFET device generates higher order distortion

The output impedance is non-linear. The mobility µ is not a constant but a
function of the vertical and horizontal electric field

We may also bias the device at moderate or weak inversion, where the device
behavior is more exponential

There is also internal feedback
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