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Review of Divergence

If we try to measure the flux at a point, we are tempted
to compute

∮

S A · dS is a small volume surrounding a
point

This flux will diminish, though, as we make the volume
smaller and smaller. We might suspect that normalizing
by volume will solve the problem

In fact, the divergence of a vector is defined as follows

divA , lim
V →0

∮

S A · dS

V

We usually write
divA = ∇ · A
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Divergence in Rectangular Coor. (I)

x̂

ŷ

ẑ r

dx
dy

dz

Consider the flux crossing a small differential volume at
position (x0, y0, z0). We can break up the flux

∮

S A · dS

into several components

=

∫

x−∆x/2

+

∫

x+∆x/2

+

∫

y−∆y/2

+

∫

y+∆y/2

+

∫

z−∆z/2

+

∫

z+∆z/2

University of California, Berkeley EECS 117 Lecture 9 – p. 3/30



Divergence in Rectangular Coor. (II)

Without loss of generality, consider the flux crossing the
surfaces in the xz plane, or the third and fourth terms in
the above calculation

The flux for these terms is simply

= −Ay(x0, y0 −
∆y

2
, z0)∆x∆z + Ay(x0, y0 +

∆y

2
, z0)∆x∆z

x̂

ŷ

ẑ

dx

dy

dz
A

Ay
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Divergence in Rectangular Coor. (III)

For a differential volume this becomes
∮

S
A · dS = ∆x∆z∆y

∂Ay

∂y

Thus the total flux is simply
∮

S
A · dS = ∆x∆y∆z

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

)

For rectangular coordinates, we have therefore proved
that

div A =

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

)
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Divergence in Rectangular Coor. (IV)

In terms of the ∇ operator

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

Since the dot product of the operator ∇ and the vector
A gives

∇ · A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

We can rewrite divA as simply ∇ · A
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Gauss’ Law (again)

Applying the definition of divergence to the electric flux
density D, we have

lim
V →0

∮

S D · dS

V
=

qinside

V
= ρ = ∇ · D

Therefore we have the important result that at any given
point

∇ · D = ρ(x, y, z)

This is the analog to the equivalent statement that we
derived last lecture

∮

S
D · dS =

∫

V
ρdV
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Divergence Theorem

The Divergence Theorem is a direct proof of this
relationship between the volume integral of the
divergence and the surface integral (applies to any
vector function A)

∫

V
∇ · AdV =

∮

S
A · dS

Here V is any bounded volume and S is the closed
surface on the boundary of the volume

Application of this theorem to the electric flux density D
immediately gives us the differential form of Gauss’ law
from the integral form
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Perfect Conductors (I)

Perfect conductors are idealized materials with zero
resistivity. Common metals such as gold, copper, aluminum
are examples of good conductors.
A fuzzy picture of a perfect conduc-
tor is a material with many mobile
charges that easily respond to an ex-
ternal fields. These carriers behave
as if they are in vacuum and they can
move unimpeded through the metal.
These mobile charges, though, can-
not leave the material due to a large
potential barrier (related to the work
function of the material).

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +
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Perfect Conductors (II)

One may argue that the electric field is zero under static
equilibrium based on the following argument. Under static
equilibrium charges cannot move. So we might argue that if
an external field is applied, then all the charges in a perfect
conductor would move to the boundary where they would
remain due to the potential barrier. But this argument
ignores the fact that the external field can be canceled by
an internal field due to the rearrangement of charges (see
figure below).

+

+

+

+

+

+

+

+

+

+

+

+

University of California, Berkeley EECS 117 Lecture 9 – p. 10/30



Perfect Conductors (III)

Thus we have to invoke Gauss’ law to further prove that
in fact there can be no net charge in the body of a
conductor. Because if net charge exists in the body,
Gauss’ law applied to a small sphere surrounding the
charge would require a field in the body, which we
already hypothesized to be zero. Therefore our
argument is consistent.

In conclusion, we are convinced that a perfect metal
should have zero electric field in the body and no net
charge in the body. Thus, we expect that if any net
charge is to be found in the material, it would have to be
on the boundary.
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Perfect Conductors (IV)

We could in fact define a perfect conductor as a
material with zero electric field inside the material. This
is an alternative way to define a perfect conductor
without making any assumptions about conductivity
(which we have not yet really explored)

A perfect conductor is also an equipotential material
under static conditions, or the potential is everywhere
constant on the surface of a perfect conductor

This is easy to prove since if E ≡ 0 in the material, then
∫

E · d` is likewise zero between any two points in the
material body.
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Tangential Boundary Conditions (I)

It’s easy to show that the electric field must cross the
surface of a perfect conductor at a normal angle. Since

∫

C
E · d` ≡ 0

For any path C, choose a path that partially crosses into the
conductor. Since E = 0 inside the conductor, the only
contribution to the integral are the side walls and Et, or the
tangential component along the path.
In the limit, we can make the
path smaller and smaller un-
til it is tangent to the surface
and imperceptibly penetrates
the material so the side wall
contributions vanish.

C

E = 0

E

t̂

n̂
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Tangential Boundary Conditions (II)

∫

C
E · d` = Et∆` ≡ 0

We are thus led to conclude that Et ≡ 0 at the surface

Another argument is that since E = −∇φ and
furthermore since the surface is an equipotential, then
clearly Et is zero since there can be no change in
potential along the surface
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Normal Boundary Conditions (I)

Consider a “pill-box” hugging the surface of a perfect
conductor as shown below

E = 0

E

t̂

n̂
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Normal Boundary Conditions (II)

The electric flux density is computed for this surface.
Like before, we’ll make the volume smaller and smaller
until the sidewall contribution goes to zero. Since the
bottom is still in the conductor and the field is zero, this
term will not contribute to the integral either. The only
remaining contribution is the normal component of the
top surface

∮

D · dS = DndS = Qinside = dSρs

We have thus shown that Dn = ρs
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Example: Spherical Shell

+Q

Neutral Conductor

Consider a charge placed at the center of a spherical
shell made of perfect conducting materials

Let’s find the surface charge density on the inner and
outer surface of the conductor
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Example (cont)

Let’s apply Gauss’ law for the dashed sphere lying
inside the conductor. Since E ≡ 0 on this surface, the
charge inside bus likewise be zero Qinside = 0 which
implies that there exists a uniform charge density (by
symmetry) of ρinner = −Q/Si where Si = 4πa2

If we now consider a larger sphere of radius r > b, since
the sphere is neutral, the net charge is just the isolated
charge Q. Thus

Dr4πr2 = Q + ρinsideS1
︸ ︷︷ ︸

−Q

+ρoutsideS2 = Q

Thus ρoutside = Q/S2 = Q
4πb2
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Example: Field Sketch

The fields have been sketched in the figure below. Radial
symmetry is preserved and an induced negative and
positive charge density appear at the shell surfaces
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Example: Electric Field Summary

We have found the following relations to hold

Dr = Q
4πr2 r < a

Dr = 0 a ≤ r ≤ b

Dr = Q
4πr2 r > b

A plot is shown below

a b

1

r2

E
r
(r

)

r
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Example: Potential

Let’s compute the potential from the fields. Take the
reference point at ∞ to be zero and integrate along a
radial path. For r > b

φ = −

∫ r

∞

Erdr =
Q

4πεr

Likewise for a ≤ r ≤ b, since Er is zero for the path
inside the conducting sphere, the potential remains
constant at Q

4πε0b
until we exit the conductor

Finally, once outside the conductor for r < a we
continue integrating

φ =
Q

4πεb
−

∫ r

a

Q

4πε0r2
dr

University of California, Berkeley EECS 117 Lecture 9 – p. 21/30



Example: Potential (cont)

Thus we have

φ =
Q

4πε0

(
1

b
+

1

r
−

1

a

)

A plot of the potential is shown below. Note that
potential on the conductor is non-zero and its value
depends on the amount of charge at the center

a b r

φr(r)
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Grounded Shell

What if we now ground the shell? That means that
φ = 0 on the surface of the conductor. The work done in
moving a point charge from infinity to the surface of the
shell is thus zero. Choose a radial path

φ = −

∫ r

∞

Erdr = 0

Since the function Er monotonic, Er = 0 everywhere
outside the sphere! A grounded spherical shell acts like
a good shield.

If Er(b) = 0, then ρs = 0 at the outer surface as well.
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Charged Spherical Shell

To find the charge on the inner sphere, we can use the
same argument as before unchanged so
ρinside = −Q/S1

But now the material is not neutral! Where did the
charge go?

Imagine starting with the ungrounded case where the
positive charge is induced on the outer surface. Then
ground the sphere and we see that the charge flows out
of the sphere into ground thus “charging” the material
negative
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Charged Shell Field Sketch

The fields have been sketched in the figure below. Radial
symmetry is preserved and an induced negative charge
density appears at inner shell surfaces. The field outside
the shell is zero.
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Poisson’s Equation (aka Fish Eq.)

We already have an equation for calculating E and ρ
directly from a charge distribution

If we know E, then we can find ρ by simply taking the
divergence: ρ = ε∇ · E. If we know φ is it possible to
predict ρ? Sure:

ρ = ε∇ · E = −ε∇ · ∇φ

The operator ∇ · ∇A is a new operator and we call it the
Laplacian ∇2

Thus we have Poisson’s Equation ∇2φ = −
ρ
ε

In a charge free region we have ∇2φ = 0. This is known
as Laplace’s equation
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Laplacian in Rect. Coordinates

Let’s untangle the beast operator

∇ · ∇φ =

(
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

)

·

(
∂φ

∂x
x̂ +

∂φ

∂y
ŷ +

∂φ

∂z
ẑ

)

OK, all cross products involving mutual vectors die (e.g.
x̂ · ŷ ≡ 0) so we have

∇
2φ =

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
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Example: Parallel Plate Structure

+ + + +  + + + + + + + + + + + + + + + + + + + +

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
EV1

ρs,t

ρs,b

Consider a battery connected to a grounded parallel
plate

Suppose the plates are made of perfect conductors. If
the plates are large, then we expect φ to be a function
of z alone (ignore the “edge effects”). Thus the operator
∇2 degenerates and inside the plates we have 0 ≤ z ≤ d

∂2φ

∂z2
= 0
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Example (cont)

Thus φ = az + b. The boundary conditions on the top
and bottom plate determine a and b uniquely. Since
φ(z = 0) = 0 we have b = 0. Also since φ(z = d) = V1,
a = V1/d

φ(z) =
V1

d
z

And the field is easily computed

E = −∇φ = −ẑ
∂

∂z

(
V1

d
z

)

= −ẑ
V1

d
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Example (cont)

The field is constant and points in the −ẑ direction.
Since the charge density on the inner plate surface is
equal to the normal component of the field there

ρs,b = εn̂ · E = −ε
V1

d

ρs,t = +ε
V1

d
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