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Electric Dipole
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An electric dipole is two equal and opposite charges q
separted by a distance d

Consider the potential due to an electric dipole at points
far removed from the dipole r ≫ d
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Law of Cosines

Vector summation is fundamentally related to a triangle.
Note that we can think of adding two vectors r and ẑd/2

as forming r+ = r + ẑd/2

The length of a vector is given by |a|2 = a · a
We can therefore express r+ in terms of r and d
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√
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2
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Or simplifying a bit and recalling that r ≫ d
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Back to Potential Calculation

So we have
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So that the potential is given by

φ(r) =
q

4πǫ

(
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)

=
−qd cos θ

4πǫr2

Unlike an isolated point charge, the potential drops like
1/r2 rather than 1/r
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Electric Field of a Dipole

The potential calculation was easy since we didn’t have
to deal with vectors

The electric field is simply E = −∇φ

Since our answer is in spherical coordinates, but there
is no ϕ variation due to symmetry, we have

∇φ = r̂
∂φ

∂r
+ θ̂

1

r

∂φ
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2qd cos θ

4πǫr3
+ θ̂

1

r
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Thus the electric field is given by

E = − qd

4πǫr3

(

r̂2 cos θ + θ̂ sin θ
)
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Electric Flux Density

It shall be convenient to define a new vector D in terms
of E

D = ǫE

Note that the units are simply C/m2.

We call this the “flux” density because the amount of it’s
flux crossing any sphere surrounding a point source is
the same

∮

S

D · dS =

∫ 2π

0

∫ π

0

q

4πr2
r2 sin θdθdϕ ==

q

4π
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Gauss’ Theorem

Because of the 1/r2 dependence of the field, the
integral is a constant

Gauss’ law proves that for any surface (not just a
sphere), the result is identical

∮

S

D · dS = q

Furthermore by superposition, the result applies to any
distribution of charge

∮

S

D · dS =

∫

V

ρdV = qinside
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Gauss’ Law “Proof”

First of all, does it makes sense? For instance, if we
consider a region with no net charge, then the flux
density crossing the surface is zero. This means that
the flux lines entering the surface from the left equal the
flux lines leaving the surface on the right

We can prove that the flux crossing an infinitesimal
surface of any shape is the same as the flux crossing a
radial cone

Notice that if the surface is tilted relative to the radial
surface by an angle θ, it’s cross-sectional area is larger
by a factor of 1/ cos θ

The flux is therefore a constant

dΨ = D · dS = DrdS cos θ = Dr
dS′

cos θ
cos θ = DrdS
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Application of Gauss’ Law

For any problem with symmetry, it’s easy to calculate
the fields directly using Gauss’ Law

Consider a long (infnite) charged wire. If the charge
density is λC/m, then by symmetry the field is radial

Applying Gauss law to a small concentric cylinder
surrounding the wire

∮

D · dS = Dr2πrdℓ

Since the charge inside the cylinder is simply λdℓ

Dr2πrdℓ = λdℓ

Dr =
λ
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Spherical Cloud of Charge

Another easy problem is a cloud of charge Q. Since the
charge density is uniform ρ = Q/V , and V = 4

3
πa3

∮

D · dS =

{

ρ4

3
πr3 = Q

(

r
a

)3
r < a

Q r > a

But
∮

D · dS = 4πr2Dr

Dr =

{

Qr
4πa3 r < a

Q
4πr2 r > a
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Charge Sheet

Consider an infinite plane that is charged uniformly with
surface charge density ρs

By symmetry, the flux through the sides of a centered
cylinder intersecting with the plane is zero and equal at
the top and bottom

The flux crossing the top, for instance, is simply DdS,
where D only can have a ŷ component by symmetry

The total flux is thus 2DdS. Applying Gauss’ Law

2DdS = ρsdS

The electric field is therefore

E = ŷ

{

ρs

2ǫ0
y > 0

−ρs

2ǫ0
y < 0
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