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Existence of Charge

Charge, like mass, is an intrinsic property of matter.

In some sense it is even more fundamental since unlike
mass, its charge not a function of an object’s velocity
(relativistic invariant).

Also note that an object’s mass and charge can be
independent since we have positive and negative
charges. The net charge is the quantity of integral
importance. A feather can have more charge than a
heavy lead ball for this reason.

Even though the existence of charge has been known
since antiquity, the systematic study only began with
people like Franklin and Coulomb in the early 1730s.
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Coulomb and Franklin

In his honor, the unit of charge is the Coulomb. For
historically incorrect reasons (much to the chagrin of
Franklin), the charge of an electron was assigned a
negative value! Additionally, a unit of charge of one C
(Coulomb) is actually quite a bit of charge.

The charge of an electron q = −1.6 × 10−19C. Or there
are about 6.25 × 1018 electrons in a charge of −1C

Experimentally it has been shown that the smallest unit
of charge is the charge of an electron (charge is
quantized)
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Coulomb’s Law

Experimentally it is observed that the electric force
between two charges follows an inverse square law
form

|Fe| =
q1q2

4πǫ0R
2
12

Note the similarity to the gravitational force Fg = G0
m1m2

R2

12

But the electric force is generally much stronger
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≈ 1042

But because we have negative and positive charges,
electric forces are easily shielded. Gravitational forces
are not, and hence very long range interaction is
dominated by gravity
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Vector Nature of Force

We know that force is a vector quantity. it has direction
in addition to magnitude and the components of force
obey vector properties. It points in a direction along the
segment connecting the charge centers. The statement
“like charges repel and opposite charges attract” is part
of our everyday culture.

Writing the force in vector form

Fe = R̂
q1q2

4πǫ0R2
=

R

|R|

q1q2

4πǫ0|R|2
= R

q1q2

4πǫ0|R|3
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Superposition of Forces

ŷ

x̂

1C

−1C

F12 F13

F1

1C

Force on charges can be derived by vectorial
summation

Note that F1 = F12 + F13 = −|F1|ŷ
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Electric Field

A convenient way to think about electrostatics forces is
to suppose the existence of a field. Since action at a
distance runs counter to relativity, we suppose that
something must “advertise” the existence of charge. We
call that something the field

E , lim
q→0

F

q

This is the force felt by a test charge of unit magnitude

Why take limits? q has to be small enough as to not
disturb the other charges in the volume in question. In
reality we know that charge is quantized and q > qe
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Field of a Point Charge

ŷ

x̂

E

r

+q

ŷ

x̂

E

r
+q

r′
|r−

r ′|

The field of a point charge q at the origin is therefore

E = r̂
q

4πǫ0r2

If q is not at origin, vectors make things easy

E = R̂
q

4πǫ0|r − r′|2
R̂ =

r − r′

|r − r′|
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Field Superposition

For N charges, we simply sum the field due to each
point charge

E(r) =
∑

i

qiR̂i

4πǫ0|r − ri|2

Field lines are a convenient way to visualize the electric
field. By convention, fields point away from positive
charges and point into negative charges.

We can use a program like Mathematica to plot field
lines. But it’s important to develop skills in sketching the
field
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Field Due to Charge Distribution

It is often convenient to define a charge density ρ. We
know that this is an essentially fictitious concept (due to
the granularity of charge), but for any mildly
macroscopic system, it’s probably OK

In a diff volume dV ′, the charge is dq = ρ(r′)dV ′

Therefore

dE = R̂
ρ(r′)dV ′

4πǫ0|r − r′|2

Summing (integrating) the fields

E =

∫

V ′

R̂
ρ(r′)dV ′

4πǫ0|r − r′|2
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Electric Potential

We always approach problems with a dual energy/force
perspective

From an energy perspective, the work done in moving a
charge against the field is simply

W = −

∫ b

a

F · dℓ = −

∫ b

a

qE · dℓ

Let Φ be the energy normalized to charge

Φ ,
W

q
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Electric Potential

ŷ

x̂

E

r

a

b
C1

C2

E||

Important question: Does Φ depend on path?

For instance, we can pick path C1 to integrate the
function or path C2

If it’s path independent, then the line integral will only be
a function of endpoints

Furthermore we can then define a potential function
Φ(r)
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Path Independence for Point Charges (I)

ŷ

x̂

C1

Consider the field of a point charge. For a point charge
it’s relatively easy to show that Φ is independent of path.

Decompose C1 into radial and tangential components
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Path Independence for Point Charges (II)

∫

C1

=

∫

C1

1

+

∫

C2

1

+

∫

C3

1

+ · · · =
∑

i

∫

C
Ri
1

︸ ︷︷ ︸

radial

+
∑

j

∫

C
Tj
1

︸ ︷︷ ︸

tang

But
∑

j

∫

C
Tj
1

= 0 since dℓ is normal to E since E is purely

radial. Thus the integral is due only to the radial
components of the path

For another path C2, the radial component is the same,
so the integral is path independent
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Path Independence in General

Again, by superposition, we can decompose the field
into components arising from individual charges

E = E1 + E2 + E3 + · · ·

Then the field is path independent for any distribution of
charges. The value of the integral is thus only a function
of the endpoints a and b

−

∫

C

E · dℓ = Φ(b) − Φ(a)

Also, for any closed path in a static field
∮

E · dℓ ≡ 0
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Potential of a Point Charge

For a point charge at the origin, the potential between
two points is given by

∫

C

E · dℓ =
q

4πǫ0

∫
dr

r2
=

q

4πǫ0

∣
∣
∣
∣

−1

r

]b

a

Let’s take the reference at infinity to be zero Φ(∞) = 0

Φ(r) = −
q

4πǫ0

(

−
1

r

)

=
q

4πǫ0r

For more than one point charge, superposition applies

Φ(r) =
∑

i

qi

4πǫ0Ri
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Potential of a Charge Distribution

For a continuous charge distribution, the charge in a
volume dV ′ is given by dqi = ρ(r′)dV ′

Applying what we have learned already

dΦ(r) =
ρ(r′)dV ′

4πǫ0|r − r′|

And integrating over the entire volume we arrive at

Φ(r) =

∫

V

ρ(r′)dV ′

4πǫ0|r − r′|

Potential is much nicer to work with than the field since
it’s a scalar computation
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Relation Between Potential and Field

By definition of potential, we have

dΦ = −E·dℓ = −E·(x̂dx+ŷdy+ẑdz) = −(Exdx+Eydy+Ezdz)

The total change in potential in terms of partials is given
by

dΦ =
∂Φ

∂x
dx +

∂Φ

∂y
dy +

∂Φ

∂z
dz

Equating components we see that Ep = −∂Φ
∂p

We can write this compactly in terms of ∇

E = −∇Φ

Note that Φ is a scalar but ∇Φ is a vector
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Gradient of a Function

We may think of ∇ = x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

But be careful, this only applies to rectangular
coordinates

Consider polar coordinates for instance. Since
dℓ = dR R̂ + R dθ θ̂, equating −E · dℓ to dΦ we have

− (ERdR + EθRdθ) =
∂Φ

∂R
dR +

∂Φ

∂θ
dθ

Or in polar coordinates we have

∇ =
∂

∂R
R̂ +

1

R

∂

∂θ
θ̂
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