EECS 117

Lecture 7: Electrostatics Review

Prof. Niknejad

University of California, Berkeley

Existence of Charge

- Charge, like mass, is an intrinsic property of matter.
- In some sense it is even more fundamental since unlike mass, its charge not a function of an object's velocity (relativistic invariant).
- Also note that an object's mass and charge can be independent since we have positive and negative charges. The *net* charge is the quantity of integral importance. A feather can have more charge than a heavy lead ball for this reason.
- Even though the existence of charge has been known since antiquity, the systematic study only began with people like Franklin and Coulomb in the early 1730s.

Coulomb and Franklin

- In his honor, the unit of charge is the Coulomb. For historically incorrect reasons (much to the chagrin of Franklin), the charge of an electron was assigned a negative value! Additionally, a unit of charge of one C (Coulomb) is actually quite a bit of charge.
- The charge of an electron $q = -1.6 \times 10^{-19} C$. Or there are about 6.25×10^{18} electrons in a charge of -1C
- Experimentally it has been shown that the smallest unit of charge is the charge of an electron (charge is quantized)

Coulomb's Law

Experimentally it is observed that the electric force between two charges follows an inverse square law form

$$|F_e| = \frac{q_1 q_2}{4\pi\epsilon_0 R_{12}^2}$$

- Note the similarity to the gravitational force $F_g = G_0 \frac{m_1 m_2}{R_{12}^2}$
- But the electric force is generally much stronger

$$\left| \frac{F_e}{F_g} \right| = \frac{q_1 q_2}{m_1 m_2} \frac{1}{4\pi\epsilon_0 G_0} \approx 10^{42}$$

But because we have negative and positive charges, electric forces are easily *shielded*. Gravitational forces are not, and hence very long range interaction is dominated by gravity

Vector Nature of Force

- We know that force is a vector quantity. it has direction in addition to magnitude and the components of force obey vector properties. It points in a direction along the segment connecting the charge centers. The statement "like charges repel and opposite charges attract" is part of our everyday culture.
- Writing the force in vector form

$$\mathbf{F}_{\mathbf{e}} = \hat{\mathbf{R}} \frac{q_1 q_2}{4\pi\epsilon_0 R^2} = \frac{\mathbf{R}}{|R|} \frac{q_1 q_2}{4\pi\epsilon_0 |R|^2} = \mathbf{R} \frac{q_1 q_2}{4\pi\epsilon_0 |R|^3}$$

Superposition of Forces

- Force on charges can be derived by vectorial summation
- **•** Note that $F_1 = F_{12} + F_{13} = -|F_1|\hat{y}$

Electric Field

A convenient way to think about electrostatics forces is to suppose the existence of a field. Since action at a distance runs counter to relativity, we suppose that something must "advertise" the existence of charge. We call that something the field

$$\mathbf{E} \triangleq \lim_{q \to 0} \frac{\mathbf{F}}{q}$$

- This is the force felt by a test charge of unit magnitude
- Why take limits? q has to be small enough as to not disturb the other charges in the volume in question. In reality we know that charge is quantized and $q > q_e$

Field of a Point Charge

 \checkmark The field of a point charge q at the origin is therefore

$$\mathbf{E} = \hat{\mathbf{r}} \frac{q}{4\pi\epsilon_0 r^2}$$

 \blacksquare If q is not at origin, vectors make things easy

$$\mathbf{E} = \hat{\mathbf{R}} \frac{q}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}'|^2}$$

$$\mathbf{\hat{R}} = rac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

Field Superposition

For N charges, we simply sum the field due to each point charge

$$\mathbf{E}(\mathbf{r}) = \sum_{i} \frac{q_i \hat{\mathbf{R}}_i}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}_i|^2}$$

- Field lines are a convenient way to visualize the electric field. By convention, fields point away from positive charges and point into negative charges.
- We can use a program like Mathematica to plot field lines. But it's important to develop skills in sketching the field

Field Due to Charge Distribution

- It is often convenient to define a charge density ρ. We know that this is an essentially fictitious concept (due to the granularity of charge), but for any mildly macroscopic system, it's probably OK
- In a diff volume dV', the charge is $dq = \rho(\mathbf{r}')dV'$
- Therefore

$$d\mathbf{E} = \hat{\mathbf{R}} \frac{\rho(\mathbf{r}') dV'}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}'|^2}$$

Summing (integrating) the fields

$$\mathbf{E} = \int_{V'} \mathbf{\hat{R}} \frac{\rho(\mathbf{r}') dV'}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}'|^2}$$

Electric Potential

- We always approach problems with a dual energy/force perspective
- From an energy perspective, the work done in moving a charge against the field is simply

$$W = -\int_{a}^{b} \mathbf{F} \cdot d\ell = -\int_{a}^{b} q \mathbf{E} \cdot d\ell$$

• Let Φ be the energy normalized to charge

$$\Phi \triangleq \frac{W}{q}$$

Electric Potential

- Important question: Does Φ depend on path?
- For instance, we can pick path C_1 to integrate the function or path C_2
- If it's path independent, then the line integral will only be a function of endpoints
- Furthermore we can then define a potential function $\Phi(\mathbf{r})$

Path Independence for Point Charges (I)

- Consider the field of a point charge. For a point charge it's relatively easy to show that Φ is independent of path.
- Decompose C_1 into radial and tangential components

Path Independence for Point Charges (II)

- But $\sum_{j} \int_{C_1^{T_j}} = 0$ since $d\ell$ is normal to E since E is purely radial. Thus the integral is due only to the radial components of the path
- For another path C₂, the radial component is the same, so the integral is path independent

Path Independence in General

Again, by superposition, we can decompose the field into components arising from individual charges

$$E = E_1 + E_2 + E_3 + \cdots$$

Then the field is path independent for any distribution of charges. The value of the integral is thus only a function of the endpoints a and b

$$-\int_C \mathbf{E} \cdot d\ell = \Phi(b) - \Phi(a)$$

Also, for any closed path in a static field

$$\oint \mathbf{E} \cdot d\ell \equiv 0$$

Potential of a Point Charge

For a point charge at the origin, the potential between two points is given by

$$\int_C \mathbf{E} \cdot d\ell = \frac{q}{4\pi\epsilon_0} \int \frac{dr}{r^2} = \frac{q}{4\pi\epsilon_0} \left| \frac{-1}{r} \right|_a^b$$

• Let's take the reference at infinity to be zero $\Phi(\infty) = 0$

$$\Phi(r) = -\frac{q}{4\pi\epsilon_0} \left(-\frac{1}{r}\right) = \frac{q}{4\pi\epsilon_0 r}$$

For more than one point charge, superposition applies

$$\Phi(r) = \sum_{i} \frac{q_i}{4\pi\epsilon_0 R_i}$$

Potential of a Charge Distribution

- For a continuous charge distribution, the charge in a volume dV' is given by $dq_i = \rho(\mathbf{r}')dV'$
- Applying what we have learned already

$$d\Phi(\mathbf{r}) = \frac{\rho(\mathbf{r}')dV'}{4\pi\epsilon_0|\mathbf{r} - \mathbf{r}'|}$$

And integrating over the entire volume we arrive at

$$\Phi(\mathbf{r}) = \int_{V} \frac{\rho(\mathbf{r}') dV'}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}'|}$$

Potential is much nicer to work with than the field since it's a scalar computation

Relation Between Potential and Field

By definition of potential, we have

 $d\Phi = -\mathbf{E} \cdot d\ell = -\mathbf{E} \cdot (\mathbf{\hat{x}} dx + \mathbf{\hat{y}} dy + \mathbf{\hat{z}} dz) = -(E_x dx + E_y dy + E_z dz)$

The total change in potential in terms of partials is given by

$$d\Phi = \frac{\partial \Phi}{\partial \mathbf{x}} dx + \frac{\partial \Phi}{\partial \mathbf{y}} dy + \frac{\partial \Phi}{\partial \mathbf{z}} dz$$

- Equating components we see that $E_p = -\frac{\partial \Phi}{\partial \mathbf{p}}$
- We can write this compactly in terms of ∇

$$\mathbf{E} = -\nabla \mathbf{\Phi}$$

Note that Φ is a scalar but $\nabla \Phi$ is a vector

Gradient of a Function

- We may think of $\nabla = \hat{\mathbf{x}} \frac{\partial}{\partial \mathbf{x}} + \hat{\mathbf{y}} \frac{\partial}{\partial \mathbf{y}} + \hat{\mathbf{z}} \frac{\partial}{\partial \mathbf{z}}$
- But be careful, this only applies to rectangular coordinates
- Consider polar coordinates for instance. Since $d\ell = dR \ \hat{\mathbf{R}} + R \ d\theta \ \hat{\theta}$, equating $-\mathbf{E} \cdot d\ell$ to $d\Phi$ we have

$$-\left(E_R dR + E_\theta R d\theta\right) = \frac{\partial \Phi}{\partial \mathbf{R}} dR + \frac{\partial \Phi}{\partial \theta} d\theta$$

Or in polar coordinates we have

$$\nabla = \frac{\partial}{\partial \mathbf{R}} \hat{\mathbf{R}} + \frac{1}{R} \frac{\partial}{\partial \theta} \hat{\theta}$$