EECS 117

Lecture 6: Lossy Transmission Lines and the Smith Chart

Prof. Niknejad

University of California, Berkeley

Dispersionless Line

To find the conditions for the transmission line to be dispersionless in terms of the R, L, C, G, expand

$$\gamma = \sqrt{(j\omega L' + R')(j\omega C' + G')}$$

$$= \sqrt{(j\omega)^2 LC(1 + \frac{R}{j\omega L} + \frac{G}{j\omega C} + \frac{RG}{(j\omega)^2 LC})}$$

$$= \sqrt{(j\omega)^2 LC} \sqrt{\Box}$$

■ Suppose that R/L = G/C and simplify the \square term

$$\Box = 1 + \frac{2R}{j\omega L} + \frac{R^2}{(j\omega)^2 L^2}$$

Dispersionless Line (II)

• For R/L = G/C the propagation constant simplifies

$$\Box = \left(1 + \frac{R}{j\omega L}\right)^2 \qquad \gamma = -j\omega\sqrt{LC}\left(1 + \frac{R}{j\omega L}\right)$$

ullet Breaking γ into real and imaginary components

$$\gamma = R\sqrt{\frac{C}{L}} - j\omega\sqrt{LC} = \alpha + j\beta$$

- The attenauation constant α is independent of frequency. For low loss lines, $\alpha \approx -\frac{R}{Z_0} \checkmark$
- The propagation constant β is a linear function of frequency \checkmark

Lossy Transmission Line Attenuation

The power delivered into the line at a point z is now non-constant and decaying exponentially

$$P_{av}(z) = \frac{1}{2}\Re\left(v(z)i(z)^*\right) = \frac{|v^+|^2}{2|Z_0|^2}e^{-2\alpha z}\Re\left(Z_0\right)$$

For instance, if $\alpha=.01\mathrm{m}^-1$, then a transmission line of length $\ell=10\mathrm{m}$ will attenuate the signal by $10\log(e^{2\alpha\ell})$ or 2 dB. At $\ell=100\mathrm{m}$ will attenuate the signal by $10\log(e^{2\alpha\ell})$ or 20 dB.

Lossy Transmission Line Impedance

Using the same methods to calculate the impedance for the low-loss line, we arrive at the following line voltage/current

$$v(z) = v^{+}e^{-\gamma z}(1 + \rho_{L}e^{2\gamma z}) = v^{+}e^{-\gamma z}(1 + \rho_{L}(z))$$
$$i(z) = \frac{v^{+}}{Z_{0}}e^{-\gamma z}(1 - \rho_{L}(z))$$

- Where $\rho_L(z)$ is the complex reflection coefficient at position z and the load reflection coefficient is unaltered from before
- The input impedance is therefore

$$Z_{in}(z) = Z_0 \frac{e^{-\gamma z} + \rho_L e^{\gamma z}}{e^{-\gamma z} - \rho_L e^{\gamma z}}$$

Lossy T-Line Impedance (cont)

• Substituting the value of ρ_L we arrive at a similar equation (now a hyperbolic tangent)

$$Z_{in}(-\ell) = Z_0 \frac{Z_L + Z_0 \tanh(\gamma \ell)}{Z_0 + Z_L \tanh(\gamma \ell)}$$

• For a short line, if $\gamma \delta \ell \ll 1$, we may safely assume that

$$Z_{in}(-\delta \ell) = Z_0 \tanh(\gamma \delta \ell) \approx Z_0 \gamma \delta \ell$$

- Recall that $Z_0 \gamma = \sqrt{Z'/Y'} \sqrt{Z'Y'}$
- As expected, input impedance is therefore the series impedance of the line (where $R = R'\delta\ell$ and $L = L'\delta\ell$)

$$Z_{in}(-\delta \ell) = Z'\delta \ell = R + j\omega L$$

Review of Resonance (I)

- We'd like to find the impedance of a series resonator near resonance $Z(\omega) = j\omega L + \frac{1}{j\omega C} + R$
- Recall the definition of the circuit Q

$$Q = \omega_0 \frac{\text{time average energy stored}}{\text{energy lost per cycle}}$$

• For a series resonator, $Q = \omega_0 L/R$. For a small frequency shift from resonance $\delta\omega \ll \omega_0$

$$Z(\omega_0 + \delta\omega) = j\omega_0 L + j\delta\omega L + \frac{1}{j\omega_0 C} \left(\frac{1}{1 + \frac{\delta\omega}{\omega_0}}\right) + R$$

Review of Resonance (II)

ullet Which can be simplified using the fact that $\omega_0 L = rac{1}{\omega_0 C}$

$$Z(\omega_0 + \delta\omega) = j2\delta\omega L + R$$

Using the definition of Q

$$Z(\omega_0 + \delta\omega) = R\left(1 + j2Q\frac{\delta\omega}{\omega_0}\right)$$

For a parallel line, the same formula applies to the admittance

$$Y(\omega_0 + \delta\omega) = G\left(1 + j2Q\frac{\delta\omega}{\omega_0}\right)$$

• Where $Q = \omega_0 C/G$

$\lambda/2$ T-Line Resonators (Series)

- A shorted transmission line of length ℓ has input impedance of $Z_{in} = Z_0 \tanh(\gamma \ell)$
- For a low-loss line, Z_0 is almost real
- Expanding the tanh term into real and imaginary parts

$$\tanh(\alpha\ell + j\beta\ell) = \frac{\sinh(2\alpha\ell)}{\cos(2\beta\ell) + \cosh(2\alpha\ell)} + \frac{j\sin(2\beta\ell)}{\cos(2\beta\ell) + \cosh(2\alpha\ell)}$$

• Since $\lambda_0 f_0 = c$ and $\ell = \lambda_0/2$ (near the resonant frequency), we have

$$\beta \ell = 2\pi \ell/\lambda = 2\pi \ell f/c = \pi + 2\pi \delta f \ell/c = \pi + \pi \delta \omega/\omega_0$$

• If the lines are low loss, then $\alpha \ell \ll 1$

$\lambda/2$ Series Resonance

Simplifying the above relation we come to

$$Z_{i}n = Z_{0} \left(\alpha \ell + j \frac{\pi \delta \omega}{\omega_{0}} \right)$$

- The above form for the input impedance of the series resonant T-line has the same form as that of the series LRC circuit
- We can define equivalent elements

$$R_{eq} = Z_0 \alpha \ell = Z_0 \alpha \lambda / 2$$

$$L_{eq} = \frac{\pi Z_0}{2\omega_0} \qquad \qquad C_{eq} = \frac{2}{Z_0 \pi \omega_0}$$

$\lambda/2$ Series Resonance Q

The equivalent Q factor is given by

$$Q = \frac{1}{\omega_0 R_{eq} C_{eq}} = \frac{\pi}{\alpha \lambda_0} = \frac{\beta_0}{2\alpha}$$

- For a low-loss line, this Q factor can be made very large. A good T-line might have a Q of 1000 or 10,000 or more
- It's difficult to build a lumped circuit resonator with such a high Q factor

$\lambda/4$ T-Line Resonators (Parallel)

• For a short-circuited $\lambda/4$ line

$$Z_{in} = Z_0 \tanh(\alpha + j\beta)\ell = Z_0 \frac{\tanh \alpha \ell + j \tan \beta \ell}{1 + j \tan \beta \ell \tanh \alpha \ell}$$

• Multiply numerator and denominator by $-j\cot\beta\ell$

$$Z_{in} = Z_0 \frac{1 - j \tanh \alpha \ell \cot \beta \ell}{\tanh \alpha \ell - j \cot \beta \ell}$$

• For $\ell = \lambda/4$ at $\omega = \omega_0$ and $\omega = \omega_0 + \delta\omega$

$$\beta \ell = \frac{\omega_0 \ell}{v} + \frac{\delta \omega \ell}{v} = \frac{\pi}{2} + \frac{\pi \delta \omega}{2\omega_0}$$

$\lambda/4$ T-Line Resonators (Parallel)

• So $\cot \beta \ell = -tan \frac{\pi \delta \omega}{2\omega_0} \approx \frac{-\pi \delta \omega}{2\omega_0}$ and $\tanh \alpha \ell \approx \alpha \ell$

$$Z_{in} = Z_0 \frac{1 + j\alpha\ell\pi\delta\omega/2\omega_0}{\alpha\ell + j\pi\delta\omega/2\omega_0} \approx \frac{Z_0}{\alpha\ell + j\pi\delta\omega/2\omega_0}$$

This has the same form for a parallel resonant RLC circuit

$$Z_{in} = \frac{1}{1/R + 2j\delta\omega C}$$

The equivalent circuit elements are

$$R_{eq} = \frac{Z_0}{\alpha \ell}$$
 $C_{eq} = \frac{\pi}{4\omega_0 Z_0}$ $L_{eq} = \frac{1}{\omega_0^2 C_{eq}}$

$\lambda/4$ T-Line Resonators Q Factor

The quality factor is thus

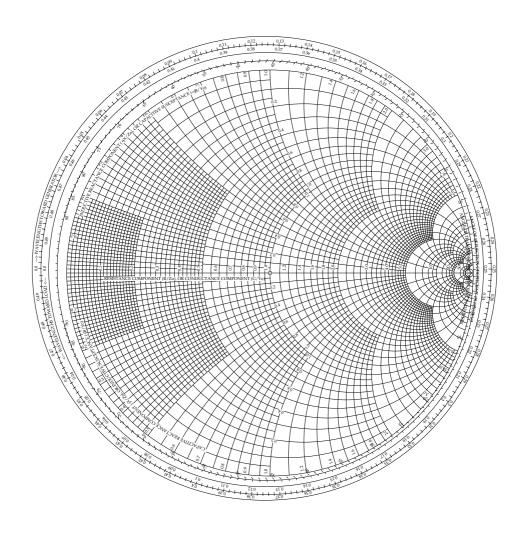
$$Q = \omega_0 RC = \frac{\pi}{4\alpha\ell} = \frac{\beta}{2\alpha}$$

The Smith Chart

- The Smith Chart is simply a graphical calculator for computing impedance as a function of reflection coefficient $z = f(\rho)$
- More importantly, many problems can be easily visualized with the Smith Chart
- This visualization leads to a insight about the behavior of transmission lines
- All the knowledge is coherently and compactly represented by the Smith Chart
- Why else study the Smith Chart? It's beautiful!
- There are deep mathematical connections in the Smith Chart. It's the tip of the iceberg! Study complex analysis to learn more.

An Impedance Smith Chart

Without further ado, here it is!



Generalized Reflection Coefficient

In sinusoidal steady-state, the voltage on the line is a T-line

$$v(z) = v^{+}(z) + v^{-}(z) = V^{+}(e^{-\gamma z} + \rho_L e^{\gamma z})$$

Recall that we can define the reflection coefficient anywhere by taking the ratio of the reflected wave to the forward wave

$$\rho(z) = \frac{v^{-}(z)}{v^{+}(z)} = \frac{\rho_L e^{\gamma z}}{e^{-\gamma z}} = \rho_L e^{2\gamma z}$$

Therefore the impedance on the line ...

$$Z(z) = \frac{v^{+}e^{-\gamma z}(1 + \rho_{L}e^{2\gamma z})}{\frac{v^{+}}{Z_{0}}e^{-\gamma z}(1 - \rho_{L}e^{2\gamma z})}$$

Normalized Impedance

• ...can be expressed in terms of $\rho(z)$

$$Z(z) = Z_0 \frac{1 + \rho(z)}{1 - \rho(z)}$$

• It is extremely fruitful to work with normalized impedance values $z={\cal Z}/{\cal Z}_0$

$$z(z) = \frac{Z(z)}{Z_0} = \frac{1 + \rho(z)}{1 - \rho(z)}$$

- Let the normalized impedance be written as z = r + jx (note small case)
- The reflection coefficient is "normalized" by default since for passive loads $|\rho| \le 1$. Let $\rho = u + jv$

Dissection of the Transformation

Now simply equate the ℜ and ℑ components in the above equaiton

$$r + jx = \frac{(1+u) + jv}{(1-u) - jv} = \frac{((1+u+jv)(1-u+jv))}{(1-u)^2 + v^2}$$

To obtain the relationship between the (r,x) plane and the (u,v) plane

$$r = \frac{1 - u^2 - v^2}{(1 - u)^2 + v^2}$$

$$x = \frac{v(1-u) + v(1+u)}{(1-u)^2 + v^2}$$

The above equations can be simplified and put into a nice form

Completing Your Squares...

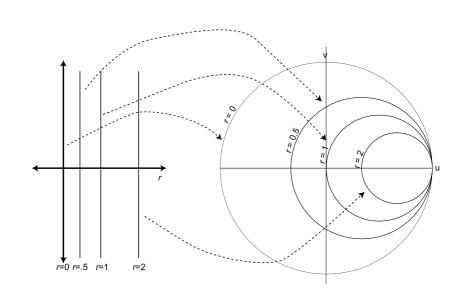
If you remember your high school algebra, you can derive the following equivalent equations

$$\left(u - \frac{r}{1+r}\right)^2 + v^2 = \frac{1}{(1+r)^2}$$

$$(u-1)^2 + \left(v - \frac{1}{x}\right)^2 = \frac{1}{x^2}$$

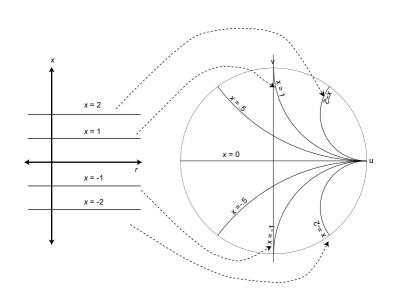
- These are circles in the (u,v) plane! Circles are good!
- We see that vertical and horizontal lines in the (r,x) plane (complex impedance plane) are transformed to circles in the (u,v) plane (complex reflection coefficient)

Resistance Transformations



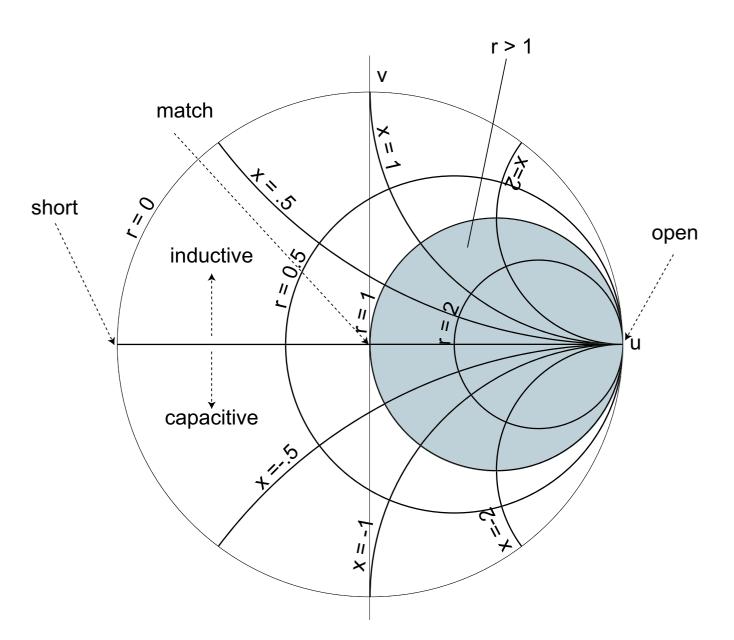
- r=0 maps to $u^2+v^2=1$ (unit circle)
- r=1 maps to $(u-1/2)^2+v^2=(1/2)^2$ (matched real part)
- r = .5 maps to $(u 1/3)^2 + v^2 = (2/3)^2$ (load R less than Z_0)
- r = 2 maps to $(u 2/3)^2 + v^2 = (1/3)^2$ (load R greater than Z_0)

Reactance Transformations

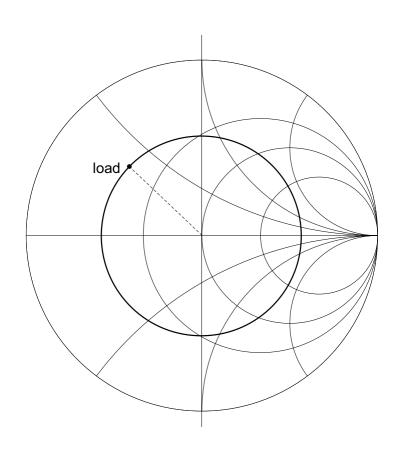


- $x = \pm 1$ maps to $(u-1)^2 + (v \mp 1)^2 = 1$
- $x = \pm 2$ maps to $(u-1)^2 + (v \mp 1/2)^2 = (1/2)^2$
- $x = \pm 1/2$ maps to $(u-1)^2 + (v \mp 2)^2 = 2^2$
- Inductive reactance maps to upper half of unit circle
- Capacitive reactance maps to lower half of unit circle

Complete Smith Chart

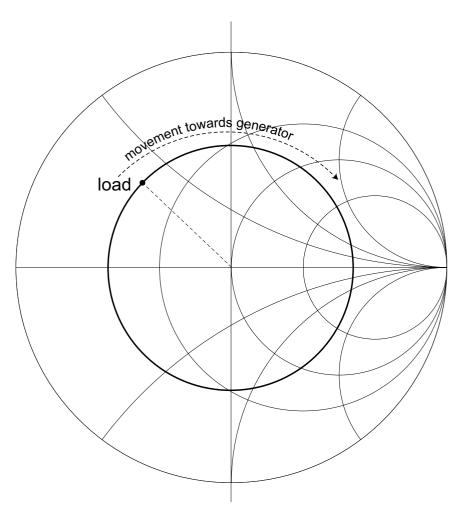


Load on Smith Chart



- ullet First map z_L on the Smith Chart as ho_L
- To read off the impedance on the T-line at any point on a lossless line, simply move on a circle of constant radius since $\rho(z)=\rho_L e^{2j\beta}$

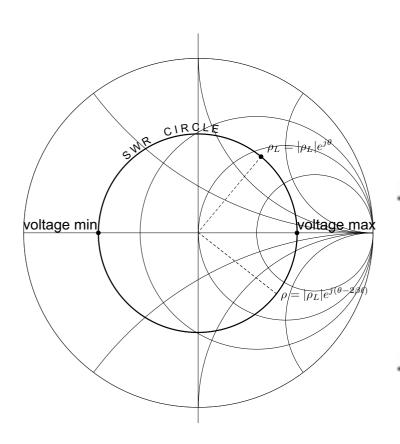
Motion Towards Generator



- Moving towards generator means $\rho(-\ell)=\rho_L e^{-2j\beta\ell}$, or clockwise motion
- For a lossy line, this corresponds to a spiral motion
- We're back to where we started when $2\beta\ell=2\pi$, or $\ell=\lambda/2$
- Thus the impedance is periodic (as we know)

SWR Circle

Since SWR is a function of $|\rho|$, a circle at origin in (u,v) plane is called an SWR circle



Recall the voltage max occurs when the reflected wave is in phase with the forward wave, so

$$\rho(z_{min}) = |\rho_L|$$

- This corresponds to the intersection of the SWR circle with the positive real axis
- Likewise, the intersection with the negative real axis is the location of the voltge min

Example of Smith Chart Visualization

- Prove that if Z_L has an inductance reactance, then the position of the first voltage maximum occurs before the voltage minimum as we move towards the generator
- A visual proof is easy using Smith Chart
- On the Smith Chart start at any point in the upper half of the unit circle. Moving towards the generator corresponds to clockwise motion on a circle. Therefore we will always cross the positive real axis first and then the negative real axis.

Impedance Matching Example

- Single stub impedance matching is easy to do with the Smith Chart
- Simply find the intersection of the SWR circle with the r=1 circle
- The match is at the center of the circle. Grab a reactance in series or shunt to move you there!

Series Stub Match

Admittance Chart

- Since $y = 1/z = \frac{1-\rho}{1+\rho}$, you can imagine that an Admittance Smith Chart looks very similar
- In fact everything is switched around a bit and you can buy or construct a combined admittance/impedance smith chart. You can also use an impedance chart for admittance if you simply map $x \to b$ and $r \to g$
- Be careful ... the caps are now on the top of the chart and the inductors on the bottom
- The short and open likewise swap positions

Admittance on Smith Chart

- Sometimes you may need to work with both impedances and admittances.
- This is easy on the Smith Chart due to the impedance inversion property of a $\lambda/4$ line

$$Z' = \frac{Z_0^2}{Z}$$

• If we normalize Z' we get y

$$\frac{Z'}{Z_0} = \frac{Z_0}{Z} = \frac{1}{z} = y$$

Admittance Conversion

- Thus if we simply rotate π degrees on the Smith Chart and read off the impedance, we're actually reading off the admittance!
- ullet Rotating π degrees is easy. Simply draw a line through origin and z_L and read off the second point of intersection on the SWR circle

Shunt Stub Match

- Let's now solve the same matching problem with a shunt stub.
- To find the shunt stub value, simply convert the value of z=1+jx to y=1+jb and place a reactance of -jb in shunt