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Dispersionless Line

To find the conditions for the transmission line to be
dispersionless in terms of the R, L, C, G, expand

γ =
√

(jωL′ + R′)(jωC ′ + G′)

=

√

(jω)2LC(1 +
R

jωL
+

G

jωC
+

RG

(jω)2LC
)

=
√

(jω)2LC
√

�

Suppose that R/L = G/C and simplify the � term

� = 1 +
2R

jωL
+

R2

(jω)2L2
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Dispersionless Line (II)

For R/L = G/C the propagation constant simplifies

� =

(

1 +
R

jωL

)2

γ = −jω
√

LC

(

1 +
R

jωL

)

Breaking γ into real and imaginary components

γ = R

√

C

L
− jω

√
LC = α + jβ

The attenauation constant α is independent of
frequency. For low loss lines, α ≈ − R

Z0
X

The propagation constant β is a linear function of
frequency X
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Lossy Transmission Line Attenuation

The power delivered into the line at a point z is now
non-constant and decaying exponentially

Pav(z) =
1

2
< (v(z)i(z)∗) =

|v+|2
2|Z0|2

e−2αz< (Z0)

For instance, if α = .01m−1, then a transmission line of
length ` = 10m will attenuate the signal by 10 log(e2α`) or
2 dB. At ` = 100m will attenuate the signal by 10 log(e2α`)
or 20 dB.
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Lossy Transmission Line Impedance

Using the same methods to calculate the impedance for
the low-loss line, we arrive at the following line
voltage/current

v(z) = v+e−γz(1 + ρLe2γz) = v+e−γz(1 + ρL(z))

i(z) =
v+

Z0

e−γz(1 − ρL(z))

Where ρL(z) is the complex reflection coefficient at
position z and the load reflection coefficient is unaltered
from before

The input impedance is therefore

Zin(z) = Z0

e−γz + ρLeγz

e−γz − ρLeγz
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Lossy T-Line Impedance (cont)

Substituting the value of ρL we arrive at a similar
equation (now a hyperbolic tangent)

Zin(−`) = Z0

ZL + Z0 tanh(γ`)

Z0 + ZL tanh(γ`)

For a short line, if γδ` � 1, we may safely assume that

Zin(−δ`) = Z0 tanh(γδ`) ≈ Z0γδ`

Recall that Z0γ =
√

Z ′/Y ′

√
Z ′Y ′

As expected, input impedance is therefore the series
impedance of the line (where R = R′δ` and L = L′δ`)

Zin(−δ`) = Z ′δ` = R + jωL
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Review of Resonance (I)

We’d like to find the impedance of a series resonator
near resonance Z(ω) = jωL + 1

jωC + R

Recall the definition of the circuit Q

Q = ω0

time average energy stored

energy lost per cycle

For a series resonator, Q = ω0L/R. For a small
frequency shift from resonance δω � ω0

Z(ω0 + δω) = jω0L + jδωL +
1

jω0C

(

1

1 + δω
ω0

)

+ R
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Review of Resonance (II)

Which can be simplified using the fact that ω0L = 1

ω0C

Z(ω0 + δω) = j2δωL + R

Using the definition of Q

Z(ω0 + δω) = R

(

1 + j2Q
δω

ω0

)

For a parallel line, the same formula applies to the
admittance

Y (ω0 + δω) = G

(

1 + j2Q
δω

ω0

)

Where Q = ω0C/G
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λ/2 T-Line Resonators (Series)

A shorted transmission line of length ` has input
impedance of Zin = Z0 tanh(γ`)

For a low-loss line, Z0 is almost real

Expanding the tanh term into real and imaginary parts

tanh(α`+jβ`) =
sinh(2α`)

cos(2β`) + cosh(2α`)
+

j sin(2β`)

cos(2β`) + cosh(2α`)

Since λ0f0 = c and ` = λ0/2 (near the resonant
frequency), we have
β` = 2π`/λ = 2π`f/c = π + 2πδf`/c = π + πδω/ω0

If the lines are low loss, then α` � 1
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λ/2 Series Resonance

Simplifying the above relation we come to

Zin = Z0

(

α` + j
πδω

ω0

)

The above form for the input impedance of the series
resonant T-line has the same form as that of the series
LRC circuit

We can define equivalent elements

Req = Z0α` = Z0αλ/2

Leq =
πZ0

2ω0

Ceq =
2

Z0πω0

University of California, Berkeley EECS 117 Lecture 6 – p. 10/33



λ/2 Series Resonance Q

The equivalent Q factor is given by

Q =
1

ω0ReqCeq
=

π

αλ0

=
β0

2α

For a low-loss line, this Q factor can be made very large.
A good T-line might have a Q of 1000 or 10,000 or more

It’s difficult to build a lumped circuit resonator with such
a high Q factor
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λ/4 T-Line Resonators (Parallel)

For a short-circuited λ/4 line

Zin = Z0 tanh(α + jβ)` = Z0

tanh α` + j tan β`

1 + j tan β` tanh α`

Multiply numerator and denominator by −j cot β`

Zin = Z0

1 − j tanh α` cot β`

tanh α` − j cot β`

For ` = λ/4 at ω = ω0 and ω = ω0 + δω

β` =
ω0`

v
+

δω`

v
=

π

2
+

πδω

2ω0
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λ/4 T-Line Resonators (Parallel)

So cot β` = −tanπδω
2ω0

≈ −πδω
2ω0

and tanh α` ≈ α`

Zin = Z0

1 + jα`πδω/2ω0

α` + jπδω/2ω0

≈ Z0

α` + jπδω/2ω0

This has the same form for a parallel resonant RLC
circuit

Zin =
1

1/R + 2jδωC

The equivalent circuit elements are

Req =
Z0

α`
Ceq =

π

4ω0Z0

Leq =
1

ω2
0
Ceq
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λ/4 T-Line Resonators Q Factor

The quality factor is thus

Q = ω0RC =
π

4α`
=

β

2α
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The Smith Chart

The Smith Chart is simply a graphical calculator for
computing impedance as a function of reflection
coefficient z = f(ρ)

More importantly, many problems can be easily
visualized with the Smith Chart

This visualization leads to a insight about the behavior
of transmission lines

All the knowledge is coherently and compactly
represented by the Smith Chart

Why else study the Smith Chart? It’s beautiful!

There are deep mathematical connections in the Smith
Chart. It’s the tip of the iceberg! Study complex analysis
to learn more.
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An Impedance Smith Chart

Without further ado, here it is!
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Generalized Reflection Coefficient

In sinusoidal steady-state, the voltage on the line is a
T-line

v(z) = v+(z) + v−(z) = V +(e−γz + ρLeγz)

Recall that we can define the reflection coefficient
anywhere by taking the ratio of the reflected wave to the
forward wave

ρ(z) =
v−(z)

v+(z)
=

ρLeγz

e−γz
= ρLe2γz

Therefore the impedance on the line ...

Z(z) =
v+e−γz(1 + ρLe2γz)
v+

Z0
e−γz(1 − ρLe2γz)
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Normalized Impedance

...can be expressed in terms of ρ(z)

Z(z) = Z0

1 + ρ(z)

1 − ρ(z)

It is extremely fruitful to work with normalized
impedance values z = Z/Z0

z(z) =
Z(z)

Z0

=
1 + ρ(z)

1 − ρ(z)

Let the normalized impedance be written as z = r + jx
(note small case)

The reflection coefficient is “normalized” by default
since for passive loads |ρ| ≤ 1. Let ρ = u + jv
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Dissection of the Transformation

Now simply equate the < and = components in the
above equaiton

r + jx =
(1 + u) + jv

(1 − u) − jv
=

((1 + u + jv)(1 − u + jv)

(1 − u)2 + v2

To obtain the relationship between the (r,x) plane and
the (u,v) plane

r =
1 − u2 − v2

(1 − u)2 + v2

x =
v(1 − u) + v(1 + u)

(1 − u)2 + v2

The above equations can be simplified and put into a
nice form
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Completing Your Squares...

If you remember your high school algebra, you can
derive the following equivalent equations

(

u − r

1 + r

)2

+ v2 =
1

(1 + r)2

(u − 1)2 +

(

v − 1

x

)2

=
1

x2

These are circles in the (u,v) plane! Circles are good!

We see that vertical and horizontal lines in the (r,x)
plane (complex impedance plane) are transformed to
circles in the (u,v) plane (complex reflection coefficient)
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Resistance Transformations

u

r
=
0

r
=
0
.5

r
=
1

r
=
2

v

r=.5 r=1 r=2r=0

r

r = 0 maps to u2 + v2 = 1 (unit circle)

r = 1 maps to (u − 1/2)2 + v2 = (1/2)2 (matched real
part)

r = .5 maps to (u − 1/3)2 + v2 = (2/3)2 (load R less than
Z0)

r = 2 maps to (u − 2/3)2 + v2 = (1/3)2 (load R greater
than Z0)
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Reactance Transformations

x

r

u

x
=

.5

x
=

1 x
=
2

x
=

-.
5

x
=

-1

x
=
-2

v

x = 1

x = 2

x = -1

x = -2

x = 0

x = ±1 maps to (u − 1)2 + (v ∓ 1)2 = 1

x = ±2 maps to (u − 1)2 + (v ∓ 1/2)2 = (1/2)2

x = ±1/2 maps to (u − 1)2 + (v ∓ 2)2 = 22

Inductive reactance maps to upper half of unit circle

Capacitive reactance maps to lower half of unit circle
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Complete Smith Chart

u
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=
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=
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=
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=
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=
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=
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v

short

open
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rr
=

22

r > 1

inductive

capacitive
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Load on Smith Chart

load

First map zL on the Smith Chart as ρL

To read off the impedance on the T-line at any point on
a lossless line, simply move on a circle of constant
radius since ρ(z) = ρLe2jβ
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Motion Towards Generator

load

m
ov
em
ent

towards generator

Moving towards
generator means
ρ(−`) = ρLe−2jβ`, or
clockwise motion

For a lossy line, this
corresponds to a
spiral motion

We’re back to where
we started when
2β` = 2π, or ` = λ/2

Thus the impedance
is periodic (as we
know)
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SWR Circle

Since SWR is a function of |ρ|, a circle at origin in
(u,v) plane is called an SWR circle

S
W

R
C I R C L E

voltage min voltage max

ρL = |ρL|ejθ

ρ = |ρL|ej(θ−2β`)

Recall the voltage max
occurs when the reflected
wave is in phase with the
forward wave, so
ρ(zmin) = |ρL|
This corresponds to the
intersection of the SWR
circle with the positive real
axis

Likewise, the intersection
with the negative real axis
is the location of the voltge
min
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Example of Smith Chart Visualization

Prove that if ZL has an inductance reactance, then the
position of the first voltage maximum occurs before the
voltage minimum as we move towards the generator

A visual proof is easy using Smith Chart

On the Smith Chart start at any point in the upper half
of the unit circle. Moving towards the generator
corresponds to clockwise motion on a circle. Therefore
we will always cross the positive real axis first and then
the negative real axis.
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Impedance Matching Example

Single stub impedance matching is easy to do with the
Smith Chart

Simply find the intersection of the SWR circle with the
r = 1 circle

The match is at the center of the circle. Grab a
reactance in series or shunt to move you there!
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Series Stub Match
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Admittance Chart

Since y = 1/z = 1−ρ
1+ρ , you can imagine that an

Admittance Smith Chart looks very similar

In fact everything is switched around a bit and you can
buy or construct a combined admittance/impedance
smith chart. You can also use an impedance chart for
admittance if you simply map x → b and r → g

Be careful ... the caps are now on the top of the chart
and the inductors on the bottom

The short and open likewise swap positions
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Admittance on Smith Chart

Sometimes you may need to work with both
impedances and admittances.

This is easy on the Smith Chart due to the impedance
inversion property of a λ/4 line

Z ′ =
Z2

0

Z

If we normalize Z ′ we get y

Z ′

Z0

=
Z0

Z
=

1

z
= y
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Admittance Conversion

Thus if we simply rotate π degrees on the Smith Chart
and read off the impedance, we’re actually reading off
the admittance!

Rotating π degrees is easy. Simply draw a line through
origin and zL and read off the second point of
intersection on the SWR circle
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Shunt Stub Match

Let’s now solve the same matching problem with a
shunt stub.

To find the shunt stub value, simply convert the value of
z = 1 + jx to y = 1 + jb and place a reactance of −jb in
shunt
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