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Open Line I/V

The open transmission line has infinite VSWR and
ρL = 1. At any given point along the transmission line

v(z) = V +(e−jβz + ejβz) = 2V + cos(βz)

whereas the current is given by

i(z) =
V +

Z0

(e−jβz − ejβz)

or

i(z) =
−2jV +

Z0

sin(βz)
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Open Line Impedance (I)

The impedance at any point along the line takes on a
simple form

Zin(−ℓ) =
v(−ℓ)
i(−ℓ) = −jZ0 cot(βℓ)

This is a special case of the more general transmission
line equation with ZL = ∞.

Note that the impedance is purely imaginary since an
open lossless transmission line cannot dissipate any
power.

We have learned, though, that the line stores reactive
energy in a distributed fashion.
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Open Line Impedance (II)

A plot of the input impedance as a function of z is
shown below
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The cotangent function takes on zero values when βℓ
approaches π/2 modulo 2π
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Open Line Impedance (III)

Open transmission line can have zero input impedance!

This is particularly surprising since the open load is in
effect transformed from an open

A plot of the voltage/current as a function of z is shown
below
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Open Line Reactance

ℓ≪ λ/4 → capacitor

ℓ < λ/4 → capacitive
reactance

ℓ = λ/4 → short (acts
like resonant series
LC circuit)

ℓ > λ/4 but ℓ < λ/2 →
inductive reactance

And the process re-
peats ...
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λ/2 Transmission Line

Plug into the general T-line equation for any multiple of
λ/2

Zin(−mλ/2) = Z0

ZL + jZ0 tan(−βλ/2)

Z0 + jZL tan(−βλ/2)

βλm/2 = 2π
λ
λm
2

= πm

tanmπ = 0 if m ∈ Z
Zin(−λm/2) = Z0

ZL

Z0

= ZL

Impedance does not change ... it’s periodic about λ/2
(not λ)
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λ/4 Transmission Line

Plug into the general T-line equation for any multiple of
λ/4

βλm/4 = 2π
λ
λm
4

= π
2
m

tanmπ
2

= ∞ if m is an odd integer

Zin(−λm/4) = Z2

0

ZL

λ/4 line transforms or “inverts” the impedance of the
load
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Effect of Source Impedance

Zs

Vs ZL
Z0

ℓ

β

Up to now we have considered only a terminated
semi-infinite line (or matched source)

Consider the effect of the source impedance Zs
The voltage at the input of the line is given by

vin = v(−ℓ) = v+ejβℓ(1 + ρLe
−2jβℓ)

University of California, Berkeley EECS 117 Lecture 5 – p. 9/20



Effect of Source Impedance

By voltage division, the voltage can also be expressed
as

vin =
Zin

Zin + Zs
Vs

Equating the two forms we arrive at

v+ =
ZinVs

(Zin + Zs)ejβℓ(1 + ρLe−2jβℓ)

In a matched system, we desire the input impedance
seen into the T-line to be the conjugate of the source
impedance (maximum power transfer)

Impedance matching is required to acheive this goal
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λ/4 Impedance Match

Rs

Vs RL

λ/4

Z0 =
√

RLRs

If the source and load are real resistors, then a
quarter-wave line can be used to match the source and
load impedances

Recall that the impedance looking into the quarter-wave
line is the “inverse” of the load impedance

Zin(z = −λ/4) =
Z2

0

ZL
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SWR on λ/4 Line

In this case, therefore, we equate this to the desired

source impedance Zin = Z2

0

RL
= Rs

The quarter-wave line should therefore have a
characteristic impedance that is the geometric mean
Z0 =

√
RsRL

Since Z0 6= RL, the line has a non-zero reflection
coefficient

SWR =
RL −

√
RLRs

RL +
√
RLRs

It also therefore has standing waves on the T-line

The non-unity SWR is given by 1+|ρL|
1−|ρL|
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Interpretation of SWR on λ/4 Line

Consider a generic lossless transformer (RL > Rs)

Thus to make the load look smaller to match to the
source, the voltage of the source should be increased in
magnitude

But since the transformer is lossless, the current will
likewise decrease in magnitude by the same factor

With the λ/4 transformer, the location of the voltage
minimum to maximum is λ/4 from load (since the load is
real)

Voltage/current is thus increased/decreased by a factor
of 1 + |ρL| at the load

Hence the impedance decreased by a factor of
(1 + |ρL|)2
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Matching with Lumped Elements (I)

Rs

Vs RL
Z0

ℓ1

Y = Y0 − jB

jB

Y = Y0

Recall the input impedance looking into a T-line varies
periodically

Zin(−ℓ) = Z0

ZL + jZ0 tan(βℓ)

Z0 + jZL tan(βℓ)

Move a distance ℓ1 away from the load such that the
real part of Zin has the desired value
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Matching with Lumped Elements (II)

Then place a shunt or series impedance on the T-line to
obtain desired reactive part of the input impedance (e.g.
zero reactance for a real match)

For instance, for a shunt match, the input admittance
looking into the line is

y(z) = Y (z)/Y0 =
1 − ρLe

j2βz

1 + ρLej2βz

At a distance ℓ1 we desire the normalized admittance to
be y1 = 1 − jb

Substitute ρL = ρejθ and solve for ℓ1 and let ψ = 2βz + θ

1 − ρejψ

1 + ρejψ
=

1 − ρ2 − j2ρ sinψ

1 + 2ρ cosψ + ρ2
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Matching with Lumped Elements (III)

Solve for ψ (and then ℓ1) from ℜ(y) = 1

ψ = θ − 2βℓ = cos−1(−ρ)

ℓ1 =
θ − ψ

2β
=

λ

4π

(

θ − cos−1(−ρ)
)

At ℓ1, the imaginary part of the input admittance is

b = ℑ(y1) = ± 2ρ
√

1 − ρ2

Placing a reactance of value −b in shunt provided
impedance match at this particular frequency

If the location of ℓ1 is not convenient, we can achieve
the same result by move back a multiple of λ/2
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Matching with Stubs (I)

Rs

Vs RL
Z0

ℓ1

Y = Y0 − jB

Y = Y0

jB

At high frequencies the matching technique discussed
above is difficult due to the lack of lumped passive
elements (inductors and capacitors)

But short/open pieces of transmission lines simulate
fixed reactance over a narrow band

A shorted stub with ℓ < λ/4 looks like an inductor
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Matching with Stubs (II)

Rs

Vs RL
Z0

ℓ1

Y = Y0 − jB

Y = Y0

jB

open stub

An open stub with ℓ < λ/4 looks like a capacitor

The procedure is identical to the case with lumped
elements but instead of using a capacitor or inductor,
we use shorted or open transmission lines

Shunt stubs are easier to fabricate than series stubs
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Lossy Transmission Lines

Lossy lines are analyzed in the same way as lossless
lines

Low-loss lines are often approximated as lossless lines

Recall the general voltage and current on the line

v(z) = v+e−γz + v−eγz i(z) =
v+

Z0

e−γz − v−

Z0

eγz

Where γ = α+ jβ is the complex propagation constant.
On an infinite line, α represents an exponential decay in
the wave amplitude

v(z) = e−αz ×
(

v+e−jβz
)
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Transmission Line Dispersion

What about dispersion? Is the amplitude attenuation a
function of frequency? If so, the wave will distort.
Moreover, how does the speed of propagation vary with
frequency?

For a dispersionless line, the output should be a linearly
scaled delayed version of the input vout(t) = Kvin(t− τ),
or in the frequency domain

Vout(jω) = KVin(jω)e−jωτ

The transfer function has constant magnitude |H(jω)|
and linear phase ∠H(jω) = −ωτ
The propagation constant jβ should therefore be a
linear function of frequency and α should be a constant

In general, a lossy transmission line has dispersion
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