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Lossless T-Line Termination
- -

o Okay, lossless line means v = j5 (o = 0), and &(Zy) =0
(real characteristic impedance independent of
frequency)

# The voltage/current phasors take the standard form

v(z) =VTe 7+ Vel

\— i(z) = 706_72 — 70672 J
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L ossless T-L ine Ter mination (cont)

-

_v(0) _ vtyv-

® The reflection coefficient has the same form

21— 2y
_ZL—|—Z()

PL

® Can therefore write
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Power on T-Line(l)

-

Let’s calculate the average power dissipation on the line
at point z
1 L
Poy(2) = 5% v(2)i(2)"]

Or using the general solution

Pu(z) = 1|V+\2% e~IBz ) 0dB2) (piBz _ x o—iB2
W\ T 7, PL PL

The product in the R terms can be expanded into four
terms

L+ pre?? — ppe®% —|pr|?
a,:ra,*
Notice that a« — a* = 2j3(a) o
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Power on T-Line (1)
-

The average power dissipated at z Is therefore

(1—1pzl?)

Power flow is constant (independent of z) along line
(lossless)

No power flows if |p;| = 1 (open or short)

Even though power is constant, voltage and current are
not!

|

University of California, Berkeley EECS 117 Lecture 4 — p. 5/26



Voltage along T-Line

- N

# When the termination is matched to the line impedance
Z1, = Zy, pr, = 0 and thus the voltage along the line
lv(2)| = |V | is constant. Otherwise

[u(2)| = [VH1+ pre®?| = [VH[1 + pre=2™|
# The voltage magnitude along the line can be written as
o(=0)] = [VF||1+ |pg e/

# The voltage is maximum when the 23/ is a equal to
0 + 2k, for any integer k; in other words, the reflection
coefficient phase modulo 27

Viar = V(1
o V(1 + [pL]) |
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Voltage Standing Wave Ratio (SWR)

- N

# Similarly, minimum when 0 + kx, where k IS an integer

k£ 0
Vmin — ‘v—i_‘(l o ‘IOL|>

# The ratio of the maximum voltage to minimum voltage is
an important metric and commonly known as the
voltage standing wave ratio, VSWR (Sometimes
pronounced viswar), or simply the standing wave ratio

SWR
Vinaz B 1+ ’PL\

Vinin 1 |,0L|

# |t follows that for a shorted or open transmission line the
VSWR is infinite, since |pz| = 1.

o |
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SWR Location
L -

# Physically the maxima occur when the reflected wave
adds in phase with the incoming wave, and minima
occur when destructive interference takes place. The
distance between maxima and minima is = in phase, or
280x = m, Or

7 A
5 = — == —
YT o937 1
# VSWR is important because it can be deduced with a
relative measurement. Absolute measurements are
difficult at microwave frequencies. By measuring

VSWR, we can readily calculate |p;|.

o |
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VSWR — Impedance M easur ement
B -

# By measuring the location of the voltage minima from
an unknown load, we can solve for the load reflection
coefficent phase 6

wmin =0 — 26€mz’n = 7
® Note that

[0(—lmin)| = [VFI1+ |pp|e?m

# Thus an unknown impedance can be characterized at
microwave frequencies by measuring VSWR and 4,,,;,,
and computing the load reflection coefficient. This was
an important measurement technigue that has been
largely supplanted by a modern network analyzer with
L built-in digital calibration and correction. J
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VSWR Example

- N

# Consider a transmission line terminated in a load
Impedance Z;, = 2Zy. The reflection coefficient at the
load is purely real

-1 2-1 1
xr+1 241 3

PL =

® Sincel+|pr|=4/3and 1 — |p;| =2/3,the VSWRis
equal to 2.

# Since the load is real, the voltage minima will occur at a
distance of \/4 from the load

o |
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lmpedance of T-Line(l)
- -

# We have seen that the voltage and current along a
transmission line are altered by the presence of a load
termination. At an arbitrary point z, wish to calculate the

iInput impedadnce, or the ratio of the voltage to current
relative to the load impdance 7,

v(=0)

(1)

# |t shall be convenient to define an analogous reflection
coefficient at an arbitrary position along the line

Zin(—L) =

Ve iBt
p(_g) — V_|_ejﬁ£ :pLe

o |
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|mpedance of T-Line(I1)
- -

® /(z) has a constant magnitude but a periodic phase.
From this we may infer that the input impedance of a

transmission line is also periodic (relation btwn p and Z
IS one-to-one)

1+ ,OLG_QjM
1 — pre=2iht

Zin(—L) = Zy

# The above equation is of paramount important as it
expresses the input impedance of a transmission line
as a function of position ¢ away from the termination.

o |
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|mpedance of T-Line (l11)

- N

# This equation can be transformed into another more
useful form by substituting the value of oy,

2 — 2y
_ZL—I—ZO

PL

Zin(—0) = Z Zr(1+ G_Qjﬁg) + Zo(1 — 6—2]'&)
‘ B OZ()(l -+ B_QjBK) -+ ZL(l — G—Qjﬁf)

Using the common complex expansions for sine and
cosine, we have

sin(x) _ (e7% — e7I%) /2]
cos(x)  (eI% 4 e=I%)/2

o |
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|mpedance of T-Line (IV)
- -

#® The expression for the input impedance Is now written
in the following form

21, + jZo tan(B0)
Z@'n —) = Z ;
(=9) "Zo+jZ1 tan(G/0)

# This is the most important equation of the lecture,
known sometimes as the “transmission line equation”

o |
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Shorted Linel/V

- N

® The shorted transmission line has infinite VSWR and
por, = —1. Thus the minimum voltage

Vimin = V(1 — |p1|) = 0, as expected. At any given
point along the transmission line

v(z) = VT (e P — IP%) = 25V sin(B2)

whereas the current is given by

or

University of California, Berkeley EECS 117 Lecture 4 — p. 15/26



Shorted Line I mpedance (1)
-

The impedance at any point along the line takes on a
simple form

= jZy tan((GY)

This is a special case of the more general transmision
line equation with Z; = 0.

Note that the impedance is purely imaginary since a
shorted lossless transmission line cannot dissipate any
power.

We have learned, though, that the line stores reactive
energy in a distributed fashion.

|
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Shorted Line Impedance (11)
- -

# A plot of the Input impedance as a function of z Is
shown below

| Zin()\/4)

-1 -0.8 -0.6 -0.4 -0.2 0

il
A

# The tangent function takes on infinite values when ¢
approaches 7 /2 modulo 27

|
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Shorted Line Impedance (111)
- -

# Shorted transmission line can have infinite input
iImpedance!

# This is particularly surprising since the load is in effect
transformed from a short of Z; = 0 to an infinite
Impedance.

# A plot of the voltage/current as a function of z is shown
below

| i(=A/4)

i z/ A
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Shorted Line Reactance

! < A/4 — inductor

V< )\/4 — Inductive 10
reactance 7.5 é é é
S|
¢ = \/4 — open (acts _——
like resonant parallel **~ N
LC circuit) L +
(> MN4butl < \/2— 72 B
capacitive reactance 2858 125

TR

And the process re-
peats ...

|
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Open Linel/V

- N

# The open transmission line has infinite VSWR and
por, = 1. At any given point along the transmission line

v(z) = V(e 997 4 eIP2) = 2V cos(62)

whereas the current is given by

+ .
i(2) = (e = )
or
_ 94/t
i) = —22Y 7 Gn(82)
A

o |
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Open Line I mpedance (1)
-

The impedance at any point along the line takes on a
simple form

A\
S
—~
|
QN
~—
I
e
~—~
|
|

—J Z cot(5L)

This is a special case of the more general transmision
line equation with Z; = oc.

Note that the impedance is purely imaginary since an
open lossless transmission line cannot dissipate any
power.

We have learned, though, that the line stores reactive
energy in a distributed fashion.

|
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Open Line I mpedance (1)
B -

# A plot of the Input impedance as a function of z Is
shown below

Zin()‘/2)
10 ‘ ‘ ‘

>

# The cotangent function takes on zero values when G/
approaches n/2 modulo 27

o |
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Open Line Impedance (l11)

- N

# Open transmission line can have zero input impedance!

# This is particularly surprising since the open load is in
effect transformed from an open

# A plot of the voltage/current as a function of z is shown
below

Vo u(=A/4)

H2/\

o |
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Open Line Reactance

¢ < \/4 — capacitor

¢ < A\/4 — capacitive 10
reactance 7-5) % %

¢ = \/4 — short (acts NS
like resonant series

LC circuit) N + +

(> A4butl < \/2— 75 |

Inductive reactance 25 S
h\

And the process re-
peats ...

|
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A/2 Transmission Line

-

Plug into the general T-line equaiton for any multiple of
A2

| 4+ jZytan(—5N/2)
Zin(—mA/2) = Zy Zo + j 71 tan(—BA/2)

BAm/2 = 277”‘77” = Tm
tanmmr =01fme 2
Zin(—=Am[2) = Zo% = Zp,

Impedance does not change ... it's periodic about /2
(not \)

|
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A/4 Transmission Line

-

Plug into the general T-line equaiton for any multiple of
A4

BAm /4 = ¢ )‘m = 5m
tanm% = oo |f m 1S an odd integer
Zm(—)\m/ﬁl) = 7

A/4 line transforms or “inverts” the impedance of the
load

|
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