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Lossless T-Line Termination

Z0, ZL

z = 0z = −ℓ

β

Okay, lossless line means γ = jβ (α = 0), and ℑ(Z0) = 0
(real characteristic impedance independent of
frequency)

The voltage/current phasors take the standard form

v(z) = V +e−γz + V −eγz

i(z) =
V +

Z0
e−γz −

V −

Z0
eγz
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Lossless T-Line Termination (cont)

At load ZL = v(0)
i(0) = V ++V −

V +
−V −

Z0

The reflection coefficient has the same form

ρL =
ZL − Z0

ZL + Z0

Can therefore write

v(z) = V +
(

e−jβz + ρLe
jβz

)

i(z) =
V +

Z0

(

e−jβz − ρLe
jβz

)
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Power on T-Line (I)

Let’s calculate the average power dissipation on the line
at point z

Pav(z) =
1

2
ℜ [v(z)i(z)∗]

Or using the general solution

Pav(z) =
1

2

|V +|2

Z0
ℜ

((

e−jβz + ρLe
jβz

)(

ejβz − ρ∗Le
−jβz

))

The product in the ℜ terms can be expanded into four
terms

1 + ρLe
2jβz − ρ∗Le

2jβz

︸ ︷︷ ︸

a−a∗

−|ρL|
2

Notice that a− a∗ = 2jℑ(a)
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Power on T-Line (II)

The average power dissipated at z is therefore

Pav =
|V +|2

2Z0

(
1 − |ρL|

2
)

Power flow is constant (independent of z) along line
(lossless)

No power flows if |ρL| = 1 (open or short)

Even though power is constant, voltage and current are
not!
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Voltage along T-Line

When the termination is matched to the line impedance
ZL = Z0, ρL = 0 and thus the voltage along the line
|v(z)| = |V +| is constant. Otherwise

|v(z)| = |V +||1 + ρLe
2jβz| = |V +||1 + ρLe

−2jβℓ|

The voltage magnitude along the line can be written as

|v(−ℓ)| = |V +||1 + |ρL|e
j(θ−2βℓ)|

The voltage is maximum when the 2βℓ is a equal to
θ + 2kπ, for any integer k; in other words, the reflection
coefficient phase modulo 2π

Vmax = |V +|(1 + |ρL|)
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Voltage Standing Wave Ratio (SWR)

Similarly, minimum when θ + kπ, where k is an integer
k 6= 0

Vmin = |V +|(1 − |ρL|)

The ratio of the maximum voltage to minimum voltage is
an important metric and commonly known as the
voltage standing wave ratio, VSWR (Sometimes
pronounced viswar), or simply the standing wave ratio
SWR

V SWR =
Vmax
Vmin

=
1 + |ρL|

1 − |ρL|

It follows that for a shorted or open transmission line the
VSWR is infinite, since |ρL| = 1.
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SWR Location

Physically the maxima occur when the reflected wave
adds in phase with the incoming wave, and minima
occur when destructive interference takes place. The
distance between maxima and minima is π in phase, or
2βδx = π, or

δx =
π

2β
=
λ

4

VSWR is important because it can be deduced with a
relative measurement. Absolute measurements are
difficult at microwave frequencies. By measuring
VSWR, we can readily calculate |ρL|.
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VSWR → Impedance Measurement

By measuring the location of the voltage minima from
an unknown load, we can solve for the load reflection
coefficent phase θ

ψmin = θ − 2βℓmin = ±π

Note that

|v(−ℓmin)| = |V +||1 + |ρL|e
jψmin|

Thus an unknown impedance can be characterized at
microwave frequencies by measuring VSWR and ℓmin
and computing the load reflection coefficient. This was
an important measurement technique that has been
largely supplanted by a modern network analyzer with
built-in digital calibration and correction.
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VSWR Example

Consider a transmission line terminated in a load
impedance ZL = 2Z0. The reflection coefficient at the
load is purely real

ρL =
zL − 1

zL + 1
=

2 − 1

2 + 1
=

1

3

Since 1 + |ρL| = 4/3 and 1 − |ρL| = 2/3, the VSWR is
equal to 2.

Since the load is real, the voltage minima will occur at a
distance of λ/4 from the load
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Impedance of T-Line (I)

We have seen that the voltage and current along a
transmission line are altered by the presence of a load
termination. At an arbitrary point z, wish to calculate the
input impedadnce, or the ratio of the voltage to current
relative to the load impdance ZL

Zin(−ℓ) =
v(−ℓ)

i(−ℓ)

It shall be convenient to define an analogous reflection
coefficient at an arbitrary position along the line

ρ(−ℓ) =
V −e−jβℓ

V +ejβℓ
= ρLe

−2jβℓ
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Impedance of T-Line (II)

ρ(z) has a constant magnitude but a periodic phase.
From this we may infer that the input impedance of a
transmission line is also periodic (relation btwn ρ and Z
is one-to-one)

Zin(−ℓ) = Z0
1 + ρLe

−2jβℓ

1 − ρLe−2jβℓ

The above equation is of paramount important as it
expresses the input impedance of a transmission line
as a function of position ℓ away from the termination.
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Impedance of T-Line (III)

This equation can be transformed into another more
useful form by substituting the value of ρL

ρL =
ZL − Z0

ZL + Z0

Zin(−ℓ) = Z0
ZL(1 + e−2jβℓ) + Z0(1 − e−2jβℓ)

Z0(1 + e−2jβℓ) + ZL(1 − e−2jβℓ)

Using the common complex expansions for sine and
cosine, we have

tan(x) =
sin(x)

cos(x)
=

(ejx − e−jx)/2j

(ejx + e−jx)/2
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Impedance of T-Line (IV)

The expression for the input impedance is now written
in the following form

Zin(−ℓ) = Z0
ZL + jZ0 tan(βℓ)

Z0 + jZL tan(βℓ)

This is the most important equation of the lecture,
known sometimes as the “transmission line equation”
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Shorted Line I/V

The shorted transmission line has infinite VSWR and
ρL = −1. Thus the minimum voltage
Vmin = |V +|(1 − |ρL|) = 0, as expected. At any given
point along the transmission line

v(z) = V +(e−jβz − ejβz) = −2jV + sin(βz)

whereas the current is given by

i(z) =
V +

Z0
(e−jβz + ejβz)

or

i(z) =
2V +

Z0
cos(βz)
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Shorted Line Impedance (I)

The impedance at any point along the line takes on a
simple form

Zin(−ℓ) =
v(−ℓ)

i(−ℓ)
= jZ0 tan(βℓ)

This is a special case of the more general transmision
line equation with ZL = 0.

Note that the impedance is purely imaginary since a
shorted lossless transmission line cannot dissipate any
power.

We have learned, though, that the line stores reactive
energy in a distributed fashion.
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Shorted Line Impedance (II)

A plot of the input impedance as a function of z is
shown below
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The tangent function takes on infinite values when βℓ
approaches π/2 modulo 2π
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Shorted Line Impedance (III)

Shorted transmission line can have infinite input
impedance!

This is particularly surprising since the load is in effect
transformed from a short of ZL = 0 to an infinite
impedance.

A plot of the voltage/current as a function of z is shown
below
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Shorted Line Reactance

ℓ≪ λ/4 → inductor

ℓ < λ/4 → inductive
reactance

ℓ = λ/4 → open (acts
like resonant parallel
LC circuit)

ℓ > λ/4 but ℓ < λ/2 →
capacitive reactance

And the process re-
peats ...
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Open Line I/V

The open transmission line has infinite VSWR and
ρL = 1. At any given point along the transmission line

v(z) = V +(e−jβz + ejβz) = 2V + cos(βz)

whereas the current is given by

i(z) =
V +

Z0
(e−jβz − ejβz)

or

i(z) =
−2jV +

Z0
sin(βz)
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Open Line Impedance (I)

The impedance at any point along the line takes on a
simple form

Zin(−ℓ) =
v(−ℓ)

i(−ℓ)
= −jZ0 cot(βℓ)

This is a special case of the more general transmision
line equation with ZL = ∞.

Note that the impedance is purely imaginary since an
open lossless transmission line cannot dissipate any
power.

We have learned, though, that the line stores reactive
energy in a distributed fashion.
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Open Line Impedance (II)

A plot of the input impedance as a function of z is
shown below
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The cotangent function takes on zero values when βℓ
approaches π/2 modulo 2π
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Open Line Impedance (III)

Open transmission line can have zero input impedance!

This is particularly surprising since the open load is in
effect transformed from an open

A plot of the voltage/current as a function of z is shown
below
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Open Line Reactance

ℓ≪ λ/4 → capacitor

ℓ < λ/4 → capacitive
reactance

ℓ = λ/4 → short (acts
like resonant series
LC circuit)

ℓ > λ/4 but ℓ < λ/2 →
inductive reactance

And the process re-
peats ...
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λ/2 Transmission Line

Plug into the general T-line equaiton for any multiple of
λ/2

Zin(−mλ/2) = Z0
ZL + jZ0 tan(−βλ/2)

Z0 + jZL tan(−βλ/2)

βλm/2 = 2π
λ
λm
2 = πm

tanmπ = 0 if m ∈ Z

Zin(−λm/2) = Z0
ZL

Z0
= ZL

Impedance does not change ... it’s periodic about λ/2
(not λ)
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λ/4 Transmission Line

Plug into the general T-line equaiton for any multiple of
λ/4

βλm/4 = 2π
λ
λm
4 = π

2m

tanmπ
2 = ∞ if m is an odd integer

Zin(−λm/4) = Z2
0

ZL

λ/4 line transforms or “inverts” the impedance of the
load
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