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Transmission Line Menagerie

stripline
microstripline coplanar

rectangular

waveguide

coaxial
two wires

T-Lines come in many shapes and sizes

Coaxial usually 75Ω or 50Ω (cable TV, Internet)

Microstrip lines are common on printed circuit boards
(PCB) and integrated circuit (ICs)

Coplanar also common on PCB and ICs

Twisted pairs is almost a T-line, ubiquitous for
phones/Ethernet
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Waveguides and Transmission Lines

The transmission lines we’ve been considering have
been propagating the “TEM” mode or Transverse
Electro-Magnetic. Later we’ll see that they can also
propagation other modes

Waveguides cannot propagate TEM but propagation
TM (Transverse Magnetic) and TE (Transverse Electric)

In general, any set of more than one lossless
conductors with uniform cross-section can transmit
TEM waves. Low loss conductors are commonly
approximated as lossless.
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Cascade of T-Lines (I)
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Consider the junction between two transmission lines
Z01 and Z02

At the interface z = 0, the boundary conditions are that
the voltage/current has to be continuous
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Cascade of T-Lines (II)

Solve these equations in terms of v+

1

The reflection coefficient has the same form (easy to
remember)

Γ =
v−
1

v+

1

=
Z02 − Z01

Z01 + Z02

The second line looks like a load impedance of value
Z02

Z01 Z02
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+
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Transmission Coefficient

The wave launched on the new transmission line at the
interface is given by

v+

2
= v+

1
+ v−

1
= v+

1
(1 + Γ) = τv+

1

This “transmitted” wave has a coefficient

τ = 1 + Γ =
2Z02

Z01 + Z02

Note the incoming wave carries a power
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|v+

1
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Conservation of Energy

The reflected and transmitted waves likewise carry a
power of

Pref =
|v−

1
|2

2Z01

= |Γ|2 |v
+

1
|2

2Z01

Ptran =
|v+

2
|2
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= |τ |2 |v
+

1
|2
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By conservation of energy, it follows that

Pin = Pref + Ptran

1

Z02

τ2 +
1

Z01

Γ2 =
1

Z01

You can verify that this relation holds!
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Bounce Diagram

Consider the bounce
diagram for the follow-
ing arrangement
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Junction of Parallel T-Lines

Z01

Z
02

z = 0

Z03

Again invoke voltage/current continuity at the interface
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2
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But v+

2
= v+

3
, so the interface just looks like the case of

two transmission lines Z01 and a new line with char.
impedance Z01||Z02.
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Reactive Terminations (I)

Rs

Vs

`

Z0, td L

Let’s analyze the problem intuitively first

When a pulse first “sees” the inductance at the load, it
looks like an open so Γ0 = +1

As time progresses, the inductor looks more and more
like a short! So Γ∞ = −1
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Reactive Terminations (II)

So intuitively we might expect the reflection coefficient
to look like this:

1 2 3 4 5

-1

-0.5

0.5

1

t/τ

The graph starts at +1 and ends at −1. In between we’ll
see that it goes through exponential decay (1st order
ODE)
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Reactive Terminations (III)

Do equations confirm our intuition?

vL = L
di

dt
= L

d

dt

(

v+

Z0

− v−

Z0

)

And the voltage at the load is given by v+ + v−

v− +
L

Z0

dv−

dt
=

L

Z0

dv+

dt
− v+

The right hand side is known, it’s the incoming
waveform
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Solution for Reactive Term

For the step response, the derivative term on the RHS
is zero at the load

v+ =
Z0

Z0 + Rs
Vs

So we have a simpler case dv+

dt = 0

We must solve the following equation

v− +
L

Z0

dv−

dt
= −v+

For simplicity, assume at t = 0 the wave v+ arrives at
load

University of California, Berkeley EECS 117 Lecture 3 – p. 13/23



Laplace Domain Solution I

In the Laplace domain

V −(s) +
sL

Z0

V −(s) − L

Z0

v−(0) = −v+/s

Solve for reflection V −(s)

V −(s) =
v−(0)L/Z0

1 + sL/Z0

− v+

s(1 + sL/Z0)

Break this into basic terms using partial fraction
expansion

−1

s(1 + sL/Z0)
=

−1

1 + sL/Z0

+
L/Z0

1 + sL/Z0
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Laplace Domain Solution (II)

Invert the equations to get back to time domain t > 0

v−(t) = (v−(0) + v+)e−t/τ − v+

Note that v−(0) = v+ since initially the inductor is an
open

So the reflection coefficient is

Γ(t) = 2e−t/τ − 1

The reflection coefficient decays with time constant
L/Z0
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Time Harmonic Steady-State

Compared with general transient case, sinusoidal case
is very easy ∂

∂t → jω

Sinusoidal steady state has many important
applications for RF/microwave circuits

At high frequency, T-lines are like interconnect for
distances on the order of λ

Shorted or open T-lines are good resonators

T-lines are useful for impedance matching
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Why Sinusoidal Steady-State?

Typical RF system modulates a sinusoidal carrier
(either frequency or phase)

If the modulation bandwidth is much smaller than the
carrier, the system looks like it’s excited by a pure
sinusoid

Cell phones are a good example. The carrier frequency
is about 1 GHz and the voice digital modulation is about
200 kHz(GSM) or 1.25 MHz(CDMA), less than a 0.1% of
the bandwidth/carrier
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Generalized Distributed Circuit Model

Z ′ Z ′ Z ′ Z ′ Z ′

Y ′ Y ′ Y ′ Y ′ Y ′

Z ′: impedance per unit length (e.g. Z ′ = jωL′ + R′)

Y ′: admittance per unit length (e.g. Y ′ = jωC ′ + G′)

A lossy T-line might have the following form (but we’ll
analyze the general case)

L′

C ′
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G′

L′

C ′

R′

G′

L′

C ′

R′

G′

L′

C ′

R′
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Time Harmonic Telegrapher’s Equations

Applying KCL and KVL to a infinitesimal section

v(z + δz) − v(z) = −Z ′δzi(z)

i(z + δz) − i(z) = −Y ′δzv(z)

Taking the limit as before (δz → 0)

dv

dz
= −Zi(z)

di

dz
= −Y v(z)
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Sin. Steady-State (SSS) Voltage/Current

Taking derivatives (notice z is the only variable) we
arrive at

d2v

dz2
= −Z

di

dz
= Y Zv(z) = γ2v(z)

d2i

dz2
= −Y

dv

dz
= Y Zi(z) = γ2i(z)

Where the propagation constant γ is a complex function

γ = α + jβ =
√

(R′ + jωL′)(G′ + jωC ′)

The general solution to D2G − γ2G = 0 is e±γz
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Lossless Line for SSS

The voltage and current are related (just as before, but
now easier to derive)

v(z) = V +e−γz + V −eγz

i(z) =
V +

Z0

e−γz − V −

Z0

eγz

Where Z0 =
√

Z′

Y ′ is the characteristic impedance of the

line (function of frequency with loss)

For a lossless line we discussed before, Z ′ = jωL′ and
Y ′ = jωC ′

Propagation constant is imaginary

γ =
√

jωL′jωC ′ = j
√

L′C ′ω
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Back to Time-Domain

Recall that the real voltages and currents are the < and
= parts of

v(z, t) = e±γzejωt = ejωt±βz

Thus the voltage/current waveforms are sinusoidal in
space and time

Sinusoidal source voltage is transmitted unaltered onto
T-line (with delay)

If there is loss, then γ has a real part α, and the wave
decays or grows on the T-line

e±γz = e±αze±jβz

The first term represents amplitude response of the
T-line
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Passive T-Line/Wave Speed

For a passive line, we expect the amplitude to decay
due to loss on the line

The speed of the wave is derived as before. In order to
follow a constant point on the wavefront, you have to
move with velocity

d

dt
(ωt ± βz = constant)

Or, v = dz
dt = ±ω

β = ±
√

1

L′C′
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