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TE Waves

TE means that ez = 0 but hz 6= 0. If kc 6= 0, we can use
our solutions directly

Hx =
−jβ

k2
c

∂hz

∂x
Hy =

−jβ

k2
c

∂hz

∂y

Ex =
−jωµ

k2
c

∂hz

∂y
Ey =

−jωµ

k2
c

∂hz

∂x

Since kc 6= 0, we find hz from the Helmholtz’s Eq.
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)

Hz = 0
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TE Wave Helmholtz Eq.

Since Hz = hz(x, y)e−jβz






∂2

∂x2
+

∂2

∂y2
−β2 + k2

︸ ︷︷ ︸

k2
c




 hz = 0

Solving the above equation is sufficient to find all the
fields.

We can also define a wave impedance to simplify the
computation

ZTE =
Ex

Hy
=

−Ey

Hx
=

ωµ

β
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Wave Cutoff Frequency

Since β =
√

k2 − k2
c , we see that the impedance is not

constant as a function of frequency.

In fact, for wave propagation we require β to be real, or
k > kc

ω
√

µǫ > kc

ω >
kc√
µǫ

= ωc

For wave propagation, the frequency ω must be larger
than the cutoff frequency ωc

Thus the waveguide acts like a high-pass filter
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TM Waves

Now the situation is the dual of the TE case, ez 6= 0 but
hz = 0

Our equations simplify down to

Hx =
jωǫ

k2
c

∂ez

∂y
Hy =

−jωǫ

k2
c

∂ez

∂x

Ex =
−jβ

k2
c

∂ez

∂x
Ey =

−jβ

k2
c

∂ez

∂y

And for kc 6= 0, our reduced Helmholtz’s Eq. for Ez

(
∂2

∂x2
+

∂2

∂y2
+ k2

c

)

ez = 0
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TM Wave Impedance

With ez known, all the fields can be derived from the
above equations

The wave impedance is given by

ZTM =
Ex

Hy
=

−Ey

Hx
=

β

ωǫ

Since β =
√

k2 − k2
c , we see that the impedance is not

constant as a function of frequency.

The same high-pass cutoff behavior is also seen with
the TM wave
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TE/TM Wave General Solution

1. Solve the reduced Helmholtz eq. for ez or hz

2. Compute the transverse fields

3. Apply the boundary conditions to find kc and any
unknown constants

4. Compute β =
√

k2 − k2
c , so that γ = jβ and ZTM = β

ωǫ
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Parallel Plate Waveguide

x̂

ŷ

ẑ

dµǫ

w

Consider a simple parallel plate waveguide structure

Let’s begin by finding the properties of a TEM mode of
propagation

Last lecture we found that the TEM wave has an
electrostatic solution in the transverse plane. We can
thus solve this problem by solving Laplace’s eq. in the
region 0 ≤ y ≤ d and 0 ≤ x ≤ wn

∇2Φ = 0

University of California, Berkeley EECS 117 Lecture 26 – p. 8/22



Voltage Potential of TEM Mode

The waveguide structure imposes the boundary
conditions on the surface of the conductors

Φ(x, 0) = 0

Φ(x, d) = V0

Neglecting fringing fields for simplicity, we have

Φ(x, y) = Ay + B

The first boundary condition requires that B ≡ 0 and the
second one can be used to solve for A = V0/d.
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Transverse Fields of TEM Mode

E

H

ρs = Dn

Js = Ht

The electric field is now computed from the potential

e(x, y) = −∇tΦ = −
(

∂Φ

∂x
x̂ +

∂Φ

∂y
ŷ

)

= −ŷ
V0

d

E = e(x, y)e−jβz = −ŷ
V0

d
e−jkz

H =
ẑ × E

ZTEM
= x̂

V0

dη
e−jkz
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Guide Voltages and Currents

The E and H fields are shown above. Notice that the
fields diverge on charge

ρn = n̂ · D = ǫ
V0

d
e−jkz

This charge is traveling at the speed of light and giving
rise to a current

I = ρnwc = w
1√
ǫµ

ǫ
V0

ηd
e−jkz =

wV0

ηd
e−jkz
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Guide Currents

We should also be able to find the guide current from
Ampère’s law

I =

∮

Cb

H · dℓ = wHx =
wV0

ηd
e−jkz

This matches our previous calculation. A third way to
calculate the current is to observe that Js = Ht

I =

∫ w

0

Js · ẑdx =
wV0

ηd
e−jkz

The line characteristic impedance is the ratio of voltage
to current

Z0 =
V

I
= V0

ηd

wV0

= η
d

w
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Guide Impedance and Phase Velocity

The guide impedance is thus only a function of the
geometry of the guide. Likewise, the phase velocity

vp =
ω

β
=

ω

k
=

1√
µǫ

The phase velocity is constant and independent of the
geometry.

University of California, Berkeley EECS 117 Lecture 26 – p. 13/22



TM Mode of Parallel Plate Guide

For TM modes, recall that hz = 0 but ez 6= 0

We begin by solving the reduced Helmholtz Eq. for ez

(
∂2

∂x2
+

∂2

∂y2
+ k2

c

)

ez(x, y) = 0

where k2
c = k2 − β2. As before, we take ∂

∂x = 0 for
simplicity

(
∂2

∂y2
+ k2

c

)

ez(x, y) = 0

The general solution of this simple equation is

ez(x, y) = A sin kcy + B cos kcy
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TM Mode Boundary Conditions

Even though ez 6= 0 inside the guide, at the boundary of
the conductors, the tangential field, and hence ez must
be zero.

This implies that B = 0 in the general solution. Also,
applying the boundary condition at y = d

ez(x, y = d) = 0 = A sin kcd

This is only true in general if kc = 0. But we have
already seen that this corresponds to a TEM wave. We
are now interested in TM waves so the argument of the
sine term must be a multiple of nπ for n = 1, 2, 3, . . .

kcd = nπ → kc =
nπ

d
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Axial Fields in Guide

The propagation constant is thus related to the
geometry of the guide (unlike the TEM case)

β =
√

k2 − k2
c =

√

k2 −
(nπ

d

)2

The axial fields are thus completely specified

ez(x, y) = An sin
(nπy

d

)

Ez(x, y, z) = An sin
(nπy

d

)

e−jβz
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Transverse TM Fields

All the other fields are a function of Ez

Hx =
−jωǫ

k2
c

∂Ez

∂y

Hy =
−jωǫ

k2
c

∂Ez

∂x

Ex =
−jβ

k2
c

∂Ez

∂x

Ey =
−jβ

k2
c

∂Ez

∂y

So that Hy = Ex = 0 by inspection. The other
components are

Hx =
jωǫ

kc
An cos

(nπy

d

)

e−jβz

Ey =
−jβ

kc
An cos

(nπy

d

)

e−jβz
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Cutoff Frequency

As we have already noted, for wave propagation β must
be real. Since β =

√

k2 − k2
c , we require

k > kc

ω
√

ǫµ > kc

ω >
kc√
µǫ

= ωc

ωc =
nπ

d
√

µǫ

The guide acts like a high-pass filter for TM modes
where the lowest propagation frequency for a particular
mode n is given by

fc =
n

2d
√

µǫ
=

nc

2d
=

n

λg
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TM Mode Velocity and Impedance

The TM mode wave impedance is given by

ZTM =
−Ey

Hx
=

β

ωǫ
=

β
√

µǫ

ωǫ
√

µǫ
= β

√
µǫkǫ =

βη

k

This is a purely real number for propagation modes
f > fc and a purely imaginary impedance for cutoff
modes

The phase velocity is given by

vp =
ω

β
=

ω

k

√

1 −
(

kc

k

)2
=

c
√

1 −
(

kc

k

)2
> c

The phase velocity is faster than the speed of light!
Does that bother you?
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Phase Velocity

It’s important to remember that the phase velocity is a
relationship between the spatial and time components
of a wave in steady-state. It does not represent the
wave evolution!

Thus it’s quite possible for the phase to advance faster
than the time lag of “light” as long as this phase lag is a
result of a steady-state process (you must wait an
infinite amount of time!)

The rate at which the wave evolves is given by the
group velocity

vg =

(
dβ

dω

)
−1

≤ c
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Power Flow

Let’s compute the average power flow along the guide
for a TM mode. This is equal to the real part of the
complex Poynting vector integrated over the guide

P0 =
1

2
ℜ

∫ w

0

∫ d

0

E × H∗ · ẑdydx

ẑ · E × H∗ = EyH
∗

x =
−jωǫ

kc

(

An cos
nπy

d

)2 −jβ

kc

=
ωǫβ

k2
c

A2

n cos2
nπy

d
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Power Flow (cont)

Integrating the cos2 term produces a factor of 1/2

P0 =
1

4

wωǫd

k2
c

|An|2ℜ(β)

Therefore, as expected, if f > fc, the power flow is
non-zero but for cutoff modes, f < fc, the average
power flow is zero
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