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Waveguides and Transmission Lines

- .

#® We started this course by studying transmission lines
by using the concept of distributed circuits. Now we’d
like to develop a field theory based approach to
analyzing transmission lines.

# Transmission lines have one or more disconnected
conductors. Waveguides, though, can consist of a
single conductor. We'd also like to analyze waveguide
structures, such as a hollow metal pipe, or a hollow
rectangular structure. These are known as waveguides.

#® These structures have a uniform cross-sectional area.
We shall show that these structures can support wave
propagation in the axial direction.

o -
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General Wave Propagation

- .

# We shall assume that waves in the guide take the
following form

E(ZC,y, Z) — [e(aj,y) T Zez(x,y)] e_jﬁz — Ee_jﬁz

H(z,y,2) = [h(z,y) + 2h.(z,y)] e 752

# |It's important to note that we have broken the wave into
two components, a part in the plane of the
cross-section, or the transverse component e(z, y), and
component in the direction of wave propagation, an
axial component, e, (x,y).

# Recall that TEM plane waves have no components in
the direction of propagation.

o -
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Maxwell’'s Equations

- .

# Naturally, the fields in the waveguide or T-line have to
satisfy Maxwell's equations. In particular

VXE=—jwuH
® Recallthat V x (Ff)=Vf xF+ fV xF
VXxE=—jBe 5 xE+e P2V x &

# Note that V x (ze,(z,y)) does not have a z-component
whereas V x e has only a z-component

s 9 2
OF OF oF, OF
_ 0 0 0 3 Yy oA T | A y T
VXe=\o oy oz |~ X@z+y82+(8aﬁ 8y)
o E, E, 0 N
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Curl of zzComponent

-

# Since E, and E, have only (z,y) dependence

oE, 0L,

V><e—z(((M 39)

# Taking the curl of the z-component generates only a
transverse component

R _ |0 9 9 |_gY% LY
VXzexy) =\ 3 by 2z |~ Xp, Vo
0 0 e,

o -
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Curl of E

- .

# Collecting terms we see that the curl of E has two
terms, an axial term and a transverse term

VxE = —jwuH = (—jBe7%%) (2 x e) +
N——
t—plane
- OF OF Oe Oe
\/( Ox oy )+ oy Y Ox
axial \ ~ <
i t—plane il
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The Field Component Equations
B o

o Notethatz x (E,x + E,¥y) = E,¥y — E X, so the
x-component of the curl equation gives

, de., ,
(1) ]ﬁEy + a—y — —]w,LLHx

# and the y-component gives

, de, .
(2) JBE, + P JwuH,
#® The z-component defines the third of our important
equations
oF, O0FE, |
(3) — = = = —jwph,(z,y)

\— Ox oy J
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The Curl of H

#® Note that V x H = jweE, and so a set of similar

equations can be derived without any extra math

, Oh., ,
(4) ]ﬁHy + a—y = ]wEEx
, Oh ., ,
() JBH, + % — _]WGEy
(6) %—aHx—'we(x )
ax ay T ] € z 7y

University of California, Berkeley
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Hx = f(non-Transverse Components)

- . .

# We can now reduce these (6) equations into (4)

equations if we take e, and h, as known components.
Since

IPH, = —ai — jweky,
ox

e, 1
By =|— — Hy | —
’ ( oy N ) j3

# substituting E, into the above equation

and

, Oh, Jwe e, ,
= e _Jwe G L,
5 5 :/ﬂ( oy I )
9
\_ ]ﬁH _ ahz weaez+jw ,LLEHx J

nyIf Bkly 6 ay
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Hx = f(z) (cont)
- o

# Collecting terms we have and k? = w? e

. k? Oh., wede,
(M_JE) o (_ O +E@y)

® Let k? = k* — 3% and simplify

B i e, B Oh.,
(7) H, = 2 (we 3y o] 8x>
# In the above eq. we have found the transverse

component z in terms of the the axial components of
the fields

o -
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Hy =1(2)
~

o \We can also solve for H, interms of e, and &,

Oh, , 10e, Jwi

BH, = jweE, — E,=—— el 5
JBH, = jwe Iy J 58x+6 Y
, 1de, jJwu Oh .

H, = = Uaadndy = S T
10ty “’E( Gor T 5 y> oy

# Collecting terms

k2 we Je oh
.02 N __wedler z
(w Jﬁ)Hy 3or "oy

J p—— _
5) Y k2 (we Ox g dy )

-
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E = f(2)

# In a similar fashion, we can also derive the following

equations
B —_j e, Oh.,
9 de, Oh.,
1 — <2 |

Notice that we now have found a functional relation
between all the transverse fileds in terms of the axial
components of the fields

=

-
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TEM, TE, and TM Waves
-

We can classify all solutions for the field components
Into 3 classes of waves.

TEM waves, which we have already studied, have no
z-component. In other words e, =0and h, =0

TE waves, or transverse electric waves, has a
transverse electric field, so while e, =0, h, # 0 (also
known as magnetic waves)

TM waves, or transverse magnetic waves, has a
transverse magnetic field, so while h, = 0, e, # 0 (also
known as electric waves)

-
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TEM Waves (again)
B

f.n From our equations (7) - (10), we see that if e, and h,
are zero, then all the fields are zero unless k. = 0

# This can be seen by working directly with equations (1)
and (5)
JBEy = —jwuHy

JBH; = —jwek,

JAEy = —5-(—jwel,)

62Ey = w2,u6Ey = k‘QEy
® Thus 32 =k% ork.=0

o -
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TEM Helmholtz Equation

The Helmholtz Eq. (V? + k*)E simplifies for the TEM
case. Take the xz-component

2 9t 92
(@—Fa—yQ—F@—Fk)Ex—O

Since the z-component of the field is a complex
exponential

Since k? = 3?

University of California, Berkeley EECS 117 L
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TEM has Static Transverse Fields

- .

# The same result applies to £, so that we have
Vie(r,y) =0

_ 50 &0
where V; =Xgz T Y5y

# This is a two-dimensional Laplace equation. Recall that
static fields satisfy Laplace’s Eq. So it appears that our
wave Is a static field in the transverse plane!

# Therefore, applying our knowledge of electrostatics, we
have

e(r,y) = —Vi®(x,y)

#® Where ¢ Is a scalar potential. This can also be seen by
taking the curl of e. If it's a static field, the curl must be
L identically zero J
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Static E Field

- .

® Notice that

Xy 2 OF OF
_ 0 0 oA Y r\ . o
Vtxe— 9z Oy 0 —Z(%—ay>——]wuhz—0
E, E, 0

® Since h, = 0, the curl of e Is zero and thus the field
behaves statically. Since V-D = V; - ee = 0, we also
have

Vid(z,y) =0

# And thus we can also define a unique potential function
In the transverse plane

2
L V12=—/ e(x,y) - dl J
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Ampere’s Law (1)
-

By Ampere’s Law (extended to include displacement
current)
VxH=j3wD+J

Or in integral form

fH-dé:/J-dSﬂw/D-ds
C S S

But since e, = 0, the surface integral term of
displacement current vanishes and we have

%H-M:/J-dS:I
C S

Which Is an equation satisfied by static magnetic fields. J
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Faraday’s Law

=

It's easy to show that the electric fields also behave
statically by using Faraday’s law

VXE=—jwB

%E-cwz—jw/B-dS:O
C S

The RHS is zero since h, = 0 for TEM waves. Thus

# Bde—0
C

and a unique potential can be defined.

or

-
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TEM Wave Impedance
=

# By equation (4) we have
JBHy = jweky

# Thus the TEM wave impedance can be defined as

5 B, Bk wype  p
TEM — 77— — = — e ;—77

Hy WE WE

# From equation (5) we have

—JBH; = jwek,

Zrey = —2 =2 = /B =y

L H., WE €

-
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TEM Fields (last)
B o

# Since H, = -L,/nand H, = E,/n, we have
Z X e(x,y
h(z,y) = — 2.9)
TEM

# Thus we only need to compute the electric field to find
all the fields in the problem. This is exactly what we
found when we studied uniform plane waves

o -
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. Begin by solving Laplace’s Eq. in the transverse plane

TEM General Solution
-

(2D problem)

. Apply boundary conditions to resolve some of the

unknown constants
Compute the fields e and h
Compute V and I (voltage and currents)

The propagation constant v = j3 = jw,/ue and the
Impedance is given by Zy =V/I

-
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TEM Waves in Hollow Waveguides?
B

# What do our equations tell us about wave propagation
In a hollow waveguide, such as a metal pipe?

o If TEM waves travel inside a such a structure, the
transverse components must be solutions to the static

2D fields.

# But if we have a metal conductor surrounding a region,
we have already proven in electrostatics that the only
solution is a zero field, which are of no interest to us.

# Thus TEM waves cannot travel in such waveguides!
We can “see” through a metal pipe, so what’'s going on?

°

#® There must be other types of waves traveling through it.

o -
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