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Review of TEM Waves

We found that E(z) = x̂Ei0e
−jβz is a solution to

Maxwell’s eq. But clearly this wave should propagate in
any direction and the physics should not change. We
need a more general formulation.

Consdier the following “plane wave”

E(x, y, z) = E0e
−jβxx−jβyy−jβzz

This function also satisfies Maxwell’s wave eq. In the
time-harmonic case, this is the Helmholtz eq.

∇2E + k2E = 0

where k = ω
√

µǫ = ω
c
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Conditions Imposed by Helmholtz

Each component of the vector must satisfy the scalar
Helmholtz eq.

∇2Ex + k2Ex = 0
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ex + k2Ex = 0

Carrying out the simple derivatives

−β2
x − β2

y − β2
z + k2 = 0

β2
x + β2

y + β2
z = k2

Define k = x̂βx + ŷβy + ẑβz as the propagation vector
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Propagation Vector

The propagation vector can be written as a scalar times
a unit vector

k = kân

The magnitude k is given by k = ω
√

µǫ

As we’ll show, the vector direction ân defines the
direction of propagation for the plane wave

Using the defined relations, we now have

E(r) = E0e
−jk·r

βx = k · x̂ = kân · x̂

βy = k · ŷ = kân · ŷ

βz = k · ẑ = kân · ẑ
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Wavefront

w
avefro

nt p
la

ner

k

Recall that a wavefront is a surface of constant phase
for the wave

Then ân · R = constant defines the surface of constant
phase. But this surface does indeed define a plane
surface. Thus we have a plane wave. Is it TEM?
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E is a “Normal” Wave

Since our wave propagations in a source free region,
∇ · E = 0. Or

E0 · ∇
(

e−jkân·r

)

= 0

∇
(

e−jkân·r

)

=

(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)

e−j(βxx+βyy+βzz)

= −j(βxx̂ + βyŷ + βz ẑ)e
−j(βxx+βyy+βzz)

So we have
−jk(E0 · ân)e−jkân·r = 0

This implies that ân · E0 = 0, or that the wave is
polarized transverse to the direction of propagation
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H is also a “Normal” Wave

Since H(r) = 1
−jωµ

∇× E, we can calculate the direction
of the H field

Recall that ∇× (fF) = f∇× F + ∇f × F

H(r) =
1

jωµ
∇

(

e−jk·r
)

× E0

H(r) =
1

jωµ
E0 ×

(

−jke−jk·r
)

H(r) =
k

ωµ
ân × E(r) =

1

η
ân × E(r)

η =
µω

k
=

µω

ω
√

ǫµ
=

√

µ/ǫ
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TEM Waves

So we have done it. We proved that the equations

E(r) = E0e
−jk·r

H(r) =
1

η
ân × E(r)

describe plane waves where E is perpendicular to the
direction of propagation and the vector H is
perpendicular to both the direction of propagation and
the vector E

These are the simplest general wave solutions to
Maxwell’s equations.
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Wave Polarization

Now we can be more explicit when we say that a wave
is linearly polarized. We simply mean that the vector E

lies along a line. But what if we take the superposition
of two linearly polarized waves with a 90◦ time lag

E(z) = x̂E1(z) + ŷE2(z)

The first wave is x̂-polarized and the second wave is
ŷ-polarized. The wave propagates in the ẑ direction

In the time-harmonic domain, a phase lag corresponds
to multiplication by −j

E(z) = x̂E10e
−jβz − jŷE20e

−jβz
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Elliptical Polarization

In time domain, the waveform is described by the
following equation

E(z, t) = ℜ
(
E(z)ejωt

)

E(z, t) = x̂E10 cos(ωt − βz) + ŷE20 sin(ωt − βz)

At a paricular point in space, say z = 0, we have

E(0, t) = x̂E10 cos(ωt) + ŷE20 sin(ωt)

Thus the wave rotates along an elliptical path in the
phase front!

We can thus create waves that rotate in one direction or
the other by simply adding two linearly polarized waves
with the right phase
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Oblique Inc. on a Cond. Boundary

Let the x̂-ŷ plane define
the plane of incidence.

Consider the polarization
of a wave impinging
obliquely on the boundary.
We can identify two
polarizations,
perpendicular to the plane
and parallel to the plane of
incidence. Let’s solve
these problems separately.

Any other polarized wave
can always be decom-
posed into these two cases

Ei

Hi

Er

Hr

ψi

ψr

ki

kr

ψ = ∞

A perpendicularly polarized
wave.
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Perpendicular Polarization

Let the angle of incidence and relfection we given by θi

and θr. Let the boundary consists of a perfect conductor

Ei = ŷEi0e
−jk1·r

where k1 = k1âni and âni = x̂ sin θi + ẑ cos θi

Ei = ŷEi0e
−jk1(x sin θi+z cos θi)

Hi =
1

ηi
an × Ei

For the reflected wave, similarly, we have
ânr = x̂ sin θr − ẑ cos θr so that

Er = ŷEr0e
−jk1(x sin θr−z cos θr)
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Conductive Boundary Condition

The conductor enforces the zero tangential field
boundary condition. Since all of E is tangential in this
case, at z = 0 we have

E1(x, 0) = Ei(x, 0) + Er(x, 0) = 0

Substituting the relations we have

ŷ
(

Ei0e
−jk1x sin θi + Er0e

−jk1x sin θr

)

= 0

For this equation to hold for any value of x and θ, the
following conditions must hold

Er0 = −Ei0 θi = θr
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Snell’s Law

We have found that the angle of incidence is equal to
the angle of reflection (Snell’s law)

The total field, therefore, takes on an interesting form.
The reflected wave is simply

Er = −ŷEi0e
−jk1(x sin θi−z cos θi)

Hr =
1

η1
ânr × Er

Hr =
Ei0

η1
(−x̂ cos θi − ẑ sin θi)e

−jk1(x sin θi−z cos θi)

The total field is thus

E1 = Ei + Er = ŷEi0

(

e−jk1z cos θi − ejk1z cos θi

)

e−jk1x sin θi
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The Total Field

Simplifying the expression for the total field

E1 = −ŷ2jEi0 sin(k1z cos θi)
︸ ︷︷ ︸

standing wave

e−jk1x sin θi

︸ ︷︷ ︸

prop. wave

H1 =
−2Ei0

η1
( x̂ cos θi cos(k1z cos θi)e

−jk1x sin θi +

ẑ j sin θi sin(k1z cos θi)e
−jk1x sin θi )
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Important Observations

In the ẑ-direction, E1y and H1x maintain standing wave
patterns (no average power propagates since E and H
are 90◦ out of phase. This matches our previous
calculation for normal incidence

Waves propagate in the x̂-direction with velocity
vx = ω/(k1 sin θi)

Wave propagation in the x̂-direction is a non-uniform
plane wave since its amplitude varies with z
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TE Waves

Notice that on plane surfaces where E = 0, we are free
to place a conducting plane at that location without
changing the fields outside of the region

In particular, notice that E = 0 when

sin(k1z cos θi) = 0

k1z cos θi =
2π

λ1
z cos θi = −mπ

This holds for m = 1, 2, . . .

So if we place a plane conductor at z = − mλ1

2 cos θi
, there

will be a “guided” wave traveling between the two
planes in the x̂ direction

Since E1x = 0, this wave is a “TE” wave as H1x 6= 0
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Parallel Polarization (I)

Ei

Hi

Er

Hr

ψi

ψr

ki

kr

ψ = ∞

Now the wave is
polarized in the plane
of incidence.

The approach is sim-
ilar to before but the
tangential component
of the electric field de-
pends on the angle of
incidence
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Parallel Polarization (II)

Now consider an incident electric field that is in the
plane of polarization

Ei = Ei0(x̂ cos θi − ẑ sin θi)e
−jk·r

Hi = y
Ei0

η1
e−jk·r

Likewise, the reflected wave is expressed as

Er = Er0(x̂ cos θi + ẑ sin θi)e
−jk·r

Hr = −y
Er0

η1
e−jk·r

Note that ki,r · r = x sin θi,r ± z cos θi,r
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Tangential Boundary Conditions

Since the sum of the reflected and incident wave must
have zero tangential component at the interface

Ei0 cos θie
−jk1x sin θi + Er0 cos θre

−jk1x sin θr = 0

These equations must hold for all θ. Thus Er0 = −Ei0 as
before

Thus we see that these equations can hold for all
values of x if and only if θi = θr
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The Total Field (Again)

Using similar arguments as before, when we sum the
fields to obtain the total field, we can observe a
standing wave in the ẑ direction and wave propagation
in the x̂ direction.

Note that the magnetic field H = Hŷ is always
perpendicular to the direction of propagation but the
electric field has a component in the x̂ direction.

This type of wave is known as a TM wave, or
“transverse magnetic” wave
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