EECS 117

Lecture 23: Oblique Incidence and Reflection

Prof. Niknejad

University of California, Berkeley

University of California, Berkeley

EECS 117 Lecture 23 - p. 1/2

Review of TEM Waves

- We found that $E(z) = \hat{x} E_{i0} e^{-j\beta z}$ is a solution to Maxwell's eq. But clearly this wave should propagate in any direction and the physics should not change. We need a more general formulation.
- Consdier the following "plane wave"

$$\mathbf{E}(x, y, z) = \mathbf{E}_{\mathbf{0}} e^{-j\beta_x x - j\beta_y y - j\beta_z z}$$

This function also satisfies Maxwell's wave eq. In the time-harmonic case, this is the Helmholtz eq.

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0$$

• where
$$k = \omega \sqrt{\mu \epsilon} = \frac{\omega}{c}$$

Conditions Imposed by Helmholtz

Each component of the vector must satisfy the scalar Helmholtz eq.

$$\nabla^2 E_x + k^2 E_x = 0$$
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) E_x + k^2 E_x = 0$$

Carrying out the simple derivatives

$$-\beta_x^2 - \beta_y^2 - \beta_z^2 + k^2 = 0$$

$$\beta_x^2 + \beta_y^2 + \beta_z^2 = k^2$$

Define $\mathbf{k} = \mathbf{\hat{x}} \beta_x + \mathbf{\hat{y}} \beta_y + \mathbf{\hat{z}} \beta_z$ as the propagation vector

Propagation Vector

The propagation vector can be written as a scalar times a unit vector

$$\mathbf{k} = k\mathbf{\hat{a}}_n$$

- The magnitude k is given by $k = \omega \sqrt{\mu \epsilon}$
- As we'll show, the vector direction \hat{a}_n defines the direction of propagation for the plane wave
- Using the defined relations, we now have

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_{\mathbf{0}} e^{-j\mathbf{k}\cdot\mathbf{r}}$$

$$\beta_x = \mathbf{k} \cdot \hat{\mathbf{x}} = k\hat{\mathbf{a}}_n \cdot \hat{\mathbf{x}}$$
$$\beta_y = \mathbf{k} \cdot \hat{\mathbf{y}} = k\hat{\mathbf{a}}_n \cdot \hat{\mathbf{y}}$$
$$\beta_z = \mathbf{k} \cdot \hat{\mathbf{z}} = k\hat{\mathbf{a}}_n \cdot \hat{\mathbf{z}}$$

Wavefront

- Recall that a wavefront is a surface of constant phase for the wave
- Then $\hat{\mathbf{a}}_n \cdot \mathbf{R} = \text{constant}$ defines the surface of constant phase. But this surface does indeed define a plane surface. Thus we have a plane wave. Is it TEM?

E is a "Normal" Wave

Since our wave propagations in a source free region, $\nabla \cdot \mathbf{E} = 0$. Or

$$\mathbf{E}_{\mathbf{0}} \cdot \nabla \left(e^{-jk\mathbf{\hat{a}}_n \cdot \mathbf{r}} \right) = 0$$

$$\nabla \left(e^{-jk\mathbf{\hat{a}}_n \cdot \mathbf{r}} \right) = \left(\mathbf{\hat{x}} \frac{\partial}{\partial x} + \mathbf{\hat{y}} \frac{\partial}{\partial y} + \mathbf{\hat{z}} \frac{\partial}{\partial z} \right) e^{-j(\beta_x x + \beta_y y + \beta_z z)}$$

$$= -j(\beta_x \mathbf{\hat{x}} + \beta_y \mathbf{\hat{y}} + \beta_z \mathbf{\hat{z}})e^{-j(\beta_x x + \beta_y y + \beta_z z)}$$

So we have

$$-jk(\mathbf{E}_{\mathbf{0}}\cdot\hat{\mathbf{a}}_n)e^{-jk\hat{\mathbf{a}}_n\cdot\mathbf{r}}=0$$

• This implies that $\hat{\mathbf{a}}_n \cdot \mathbf{E}_0 = 0$, or that the wave is polarized transverse to the direction of propagation

H is also a "Normal" Wave

- Since $\mathbf{H}(\mathbf{r}) = \frac{1}{-j\omega\mu} \nabla \times \mathbf{E}$, we can calculate the direction of the *H* field
- Recall that $\nabla \times (f\mathbf{F}) = f\nabla \times \mathbf{F} + \nabla \mathbf{f} \times \mathbf{F}$

$$\mathbf{H}(\mathbf{r}) = \frac{1}{j\omega\mu} \nabla \left(e^{-j\mathbf{k}\cdot\mathbf{r}} \right) \times \mathbf{E}_{\mathbf{0}}$$

$$\mathbf{H}(\mathbf{r}) = \frac{1}{j\omega\mu} \mathbf{E}_{\mathbf{0}} \times \left(-j\mathbf{k}e^{-j\mathbf{k}\cdot\mathbf{r}}\right)$$

$$\mathbf{H}(\mathbf{r}) = \frac{k}{\omega\mu} \mathbf{\hat{a}}_n \times \mathbf{E}(\mathbf{r}) = \frac{1}{\eta} \mathbf{\hat{a}}_n \times \mathbf{E}(\mathbf{r})$$

$$\eta = \frac{\mu\omega}{k} = \frac{\mu\omega}{\omega\sqrt{\epsilon\mu}} = \sqrt{\mu/\epsilon}$$

University of California, Berkeley

TEM Waves

So we have done it. We proved that the equations

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_{\mathbf{0}} e^{-j\mathbf{k}\cdot\mathbf{r}}$$

$$\mathbf{H}(\mathbf{r}) = \frac{1}{\eta} \mathbf{\hat{a}}_n \times \mathbf{E}(\mathbf{r})$$

- describe plane waves where E is perpendicular to the direction of propagation and the vector H is perpendicular to both the direction of propagation and the vector E
- These are the simplest general wave solutions to Maxwell's equations.

Wave Polarization

Now we can be more explicit when we say that a wave is linearly polarized. We simply mean that the vector E lies along a line. But what if we take the superposition of two linearly polarized waves with a 90° time lag

$\mathbf{E}(z) = \mathbf{\hat{x}} E_1(z) + \mathbf{\hat{y}} E_2(z)$

- The first wave is \hat{x} -polarized and the second wave is \hat{y} -polarized. The wave propagates in the \hat{z} direction
- In the time-harmonic domain, a phase lag corresponds to multiplication by -j

$$\mathbf{E}(z) = \mathbf{\hat{x}} E_{10} e^{-j\beta z} - j\mathbf{\hat{y}} E_{20} e^{-j\beta z}$$

Elliptical Polarization

In time domain, the waveform is described by the following equation

$$\mathbf{E}(z,t) = \Re \left(\mathbf{E}(z)e^{j\omega t} \right)$$

 $\mathbf{E}(z,t) = \mathbf{\hat{x}} E_{10} \cos(\omega t - \beta z) + \mathbf{\hat{y}} E_{20} \sin(\omega t - \beta z)$

• At a paricular point in space, say z = 0, we have

 $\mathbf{E}(0,t) = \mathbf{\hat{x}} E_{10} \cos(\omega t) + \mathbf{\hat{y}} E_{20} \sin(\omega t)$

- Thus the wave rotates along an elliptical path in the phase front!
- We can thus create waves that rotate in one direction or the other by simply adding two linearly polarized waves with the right phase

Oblique Inc. on a Cond. Boundary

- Let the x-y plane define the plane of incidence.
- Consider the polarization of a wave impinging obliquely on the boundary. We can identify two polarizations, perpendicular to the plane and parallel to the plane of incidence. Let's solve these problems separately.
- Any other polarized wave can always be decomposed into these two cases

A perpendicularly polarized wave.

Perpendicular Polarization

• Let the angle of incidence and relfection we given by θ_i and θ_r . Let the boundary consists of a perfect conductor

$$\mathbf{E}_{\mathbf{i}} = \hat{\mathbf{y}} E_{i0} e^{-j\mathbf{k}_1 \cdot \mathbf{r}}$$

• where $\mathbf{k_1} = k_1 \hat{\mathbf{a}}_{ni}$ and $\hat{\mathbf{a}}_{ni} = \hat{\mathbf{x}} \sin \theta_i + \hat{\mathbf{z}} \cos \theta_i$

$$\mathbf{E}_{\mathbf{i}} = \mathbf{\hat{y}} E_{i0} e^{-jk_1(x\sin\theta_i + z\cos\theta_i)}$$

$$\mathbf{H}_{\mathbf{i}} = \frac{1}{\eta_i} \mathbf{a}_n \times \mathbf{E}_{\mathbf{i}}$$

• For the reflected wave, similarly, we have $\hat{\mathbf{a}}_{nr} = \hat{\mathbf{x}} \sin \theta_r - \hat{\mathbf{z}} \cos \theta_r$ so that

$$\mathbf{E}_{\mathbf{r}} = \mathbf{\hat{y}} E_{r0} e^{-jk_1 (x \sin \theta_r - z \cos \theta_r)}$$

Conductive Boundary Condition

The conductor enforces the zero tangential field boundary condition. Since all of E is tangential in this case, at z = 0 we have

$$\mathbf{E_1}(x,0) = \mathbf{E_i}(x,0) + \mathbf{E_r}(x,0) = 0$$

Substituting the relations we have

$$\hat{\mathbf{y}}\left(E_{i0}e^{-jk_1x\sin\theta_i} + E_{r0}e^{-jk_1x\sin\theta_r}\right) = 0$$

For this equation to hold for any value of x and θ , the following conditions must hold

$$E_{r0} = -E_{i0} \qquad \qquad \theta_i = \theta_r$$

Snell's Law

- We have found that the angle of incidence is equal to the angle of reflection (Snell's law)
- The total field, therefore, takes on an interesting form. The reflected wave is simply

$$\mathbf{E}_{\mathbf{r}} = -\mathbf{\hat{y}} E_{i0} e^{-jk_1(x\sin\theta_i - z\cos\theta_i)}$$

$$\mathbf{H}_{\mathbf{r}} = \frac{1}{\eta_1} \mathbf{\hat{a}}_{nr} \times \mathbf{E}_{\mathbf{r}}$$

$$\mathbf{H}_{\mathbf{r}} = \frac{E_{i0}}{\eta_1} (-\mathbf{\hat{x}}\cos\theta_i - \mathbf{\hat{z}}\sin\theta_i)e^{-jk_1(x\sin\theta_i - z\cos\theta_i)}$$

The total field is thus

$$\mathbf{E_1} = \mathbf{E_i} + \mathbf{E_r} = \mathbf{\hat{y}} E_{i0} \left(e^{-jk_1 z \cos \theta_i} - e^{jk_1 z \cos \theta_i} \right) e^{-jk_1 x \sin \theta_i}$$

The Total Field

Simplifying the expression for the total field

$$\mathbf{E_1} = -\mathbf{\hat{y}}_{2j} E_{i0} \underbrace{\sin(k_1 z \cos \theta_i)}_{\text{standing wave}} \underbrace{e^{-jk_1 x \sin \theta_i}}_{\text{prop. wave}}$$

$$\mathbf{H_1} = \frac{-2E_{i0}}{\eta_1} \left(\begin{array}{c} \mathbf{\hat{x}} & \cos\theta_i \cos(k_1 z \cos\theta_i) e^{-jk_1 x \sin\theta_i} + \\ \mathbf{\hat{z}} & j \sin\theta_i \sin(k_1 z \cos\theta_i) e^{-jk_1 x \sin\theta_i} \end{array} \right)$$

Important Observations

- In the \hat{z} -direction, E_{1y} and H_{1x} maintain standing wave patterns (no average power propagates since E and H are 90° out of phase. This matches our previous calculation for normal incidence
- Waves propagate in the $\hat{\mathbf{x}}$ -direction with velocity $v_x = \omega/(k_1 \sin \theta_i)$
- Wave propagation in the $\hat{\mathbf{x}}$ -direction is a non-uniform plane wave since its amplitude varies with z

TE Waves

- Notice that on plane surfaces where E = 0, we are free to place a conducting plane at that location without changing the fields outside of the region
- In particular, notice that $\mathbf{E} = 0$ when

$$\sin(k_1 z \cos \theta_i) = 0$$

$$k_1 z \cos \theta_i = \frac{2\pi}{\lambda_1} z \cos \theta_i = -m\pi$$

- This holds for $m = 1, 2, \ldots$
- So if we place a plane conductor at $z = -\frac{m\lambda_1}{2\cos\theta_i}$, there will be a "guided" wave traveling between the two planes in the $\hat{\mathbf{x}}$ direction
- Since $E_{1x} = 0$, this wave is a "TE" wave as $H_{1x} \neq 0$

Parallel Polarization (I)

- Now the wave is polarized in the plane of incidence.
- The approach is similar to before but the tangential component of the electric field depends on the angle of incidence

Parallel Polarization (II)

Now consider an incident electric field that is in the plane of polarization

$$\mathbf{E}_{i} = \mathbf{E}_{i0} (\hat{\mathbf{x}} \cos \theta_{i} - \hat{\mathbf{z}} \sin \theta_{i}) e^{-j\mathbf{k}\cdot\mathbf{r}}$$
$$\mathbf{H}_{i} = \mathbf{y} \frac{E_{i0}}{\eta_{1}} e^{-j\mathbf{k}\cdot\mathbf{r}}$$

Likewise, the reflected wave is expressed as

$$\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\mathbf{r}\mathbf{0}}(\mathbf{\hat{x}}\cos\theta_i + \mathbf{\hat{z}}\sin\theta_i)e^{-j\mathbf{k}\cdot\mathbf{r}}$$

$$\mathbf{H}_{\mathbf{r}} = -\mathbf{y} \frac{E_{r0}}{\eta_1} e^{-j\mathbf{k}\cdot\mathbf{r}}$$

• Note that $\mathbf{k}_{i,\mathbf{r}} \cdot \mathbf{r} = x \sin \theta_{i,r} \pm z \cos \theta_{i,r}$

Tangential Boundary Conditions

Since the sum of the reflected and incident wave must have zero tangential component at the interface

 $E_{i0}\cos\theta_i e^{-jk_1x\sin\theta_i} + E_{r0}\cos\theta_r e^{-jk_1x\sin\theta_r} = 0$

- These equations must hold for all θ . Thus $E_{r0} = -E_{i0}$ as before
- Thus we see that these equations can hold for all values of x if and only if $\theta_i = \theta_r$

The Total Field (Again)

- Using similar arguments as before, when we sum the fields to obtain the total field, we can observe a standing wave in the 2 direction and wave propagation in the x direction.
- Note that the magnetic field $H = H\hat{y}$ is always perpendicular to the direction of propagation but the electric field has a component in the \hat{x} direction.
- This type of wave is known as a TM wave, or "transverse magnetic" wave