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EM Power Carried by Plane Wave

In a lossless medium, we have found that

Ex = E0 cos(ωt − βz)

Hy =
E0

η0
cos(ωt − βz)

where β = ω
√

µǫ and η =
√

µ/ǫ

The Poynting vector S is easily calculated

S = E × H = ẑ
E2

0

η0
cos2(ωt − βz)

S = ẑ
E2

0

2η0
(1 + cos (2(ωt − βz)))
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Average Power of Plane Wave

If we average the Poynting vector over time, the
magnitude is

Sav =
E2

0

2η0

This simple equation is very useful for estimating the
electric field strength of a EM wave far from its source
(where it can be approximated as a plane wave)

The energy stored in the electric and magnetic fields
are

we =
1

2
ǫ|Ex|2 =

1

2
ǫE2

0 cos2(ωt − βz)

wm =
1

2
µ|Hy|2 =

1

2
µ

E2
0

η2
0

cos2(ωt − βz)
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Plane Wave “Resonance”

It’s now clear that

wm =
1

2
µ

E2
0

µ
ǫ

cos2(ωt − βz) = we

In other words, the stored magnetic energy is equal to
the stored electric energy. In analogy with a LC circuit,
we say that the wave is in resonance

We can also show that

∂

∂t

∫

V

(wm + we)dV = −
∮

S

S · dS
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Example: Cell Phone Basestation

A cell phone base station transmits 10kW of power.
Estimate the average electric field at a distance of 1m
from the antenna.

Assuming that the medium around the antenna is
lossless, the energy transmitted by the source at any
given location from the source must be given by

Pt =

∮

Surf
S · dS

where Surf is a surface covering the source of radiation.

Since we do not know the antenna radiation pattern,
let’s assume an isotropic source (equal radiation in all
directions)
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Example Cont.

In that case, the average Poynting vector at a distance r
from the source is given by

S =
Pt

4πr2
=

104

4π

W

m2

This equation is simply derived by observing that the
surface area of a sphere of radius r is given by 4πr2

Using S = 1
2

E2

0

η0

, we have

E0 =
√

2η0S =

√

2 × 377 × 104

4π
= 775

V

m
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Example: Cell Phone Handset

A cell phone handset transmits 1W of power. What is
the average electric field at a distance of 10cm from the
handset?

S =
Pt

4πr2
=

1

4π.12

W

m2
= 77

W

m2

We can see that the electric field near a handset is at a
much lower level.

What’s a safe level?

University of California, Berkeley EECS 117 Lecture 22 – p. 7/29



Complex Poynting Theorem

Last lecture we derived the Poynting Theorem for
general electric/magnetic fields. In this lecture we’d like
to derive the Poynting Theorem for time-harmonic fields.

We can’t simply take our results from last lecture and
simply transform ∂

∂t → jω. This is because the Poynting
vector is a non-linear function of the fields.

Let’s start from the beginning

∇× E = −jωB

∇× H = jωD + J = (jωǫ + σ)E
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Complex Poynting Theorem (II)

Using our knowledge of circuit theory, P = V × I∗, we
compute the following quantity

∇ · (E × H∗) = H∗ · ∇ × E − E · ∇ × H∗

∇ · (E × H∗) = H∗ · (−jωB) − E · (jωD∗ + J∗)

Applying the Divergence Theorem
∫

V

∇ · (E × H∗)dV =

∮

S

(E × H∗) · dS

∮

S

(E×H∗) ·dS = −
∫

V

E ·J∗dV +

∫

V

jω(E ·D∗−H∗ ·B)dV
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Complex Poynting Theorem (III)

Let’s define σeff = ωǫ′′ + σ, and ǫ = ǫ′. Since most
materials are non-magnetic, we can ignore magnetic
losses
∫

S

(E×H∗)·dS = −
∫

V

σE·D∗dV −jω

∫

V

(µH∗ · H− ǫE · E∗) dV

Notice that the first volume integral is a real number
whereas the second volume integral is imaginary

ℜ
(∮

S

E × H∗ · dS

)

= −2

∫

V

PcdV

ℑ
(∮

S

E × H∗ · dS

)

= −4ω

∫

V

(wm − we)dV
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Complex Poynting Vector

Let’s compute the average vector S

S = ℜ
(
Eejωt

)
×ℜ

(
Hejωt

)

First observe that ℜ(A) = 1
2(A + A∗), so that

ℜ(G) ×ℜ(F) =
1

2
(G + G∗) × 1

2
(F + F∗)

=
1

4
(G × F + G × F∗ + G∗ × F + G∗ × F∗)

=
1

4
[(G × F∗ + G∗ × F) + (G × F + G∗ × F∗)]

=
1

2
ℜ (G × F∗ + G × F)
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Average Complex Poynting Vector

Finally, we have computed the complex Poynting vector
with the time dependence

S =
1

2
ℜ

(
E × H∗ + E × He2jωt

)

Taking the average value, the complex exponential
vanishes, so that

Sav =
1

2
ℜ (E × H∗)

We have thus justified that the quantity S = E × H∗

represents the complex power stored in the field.
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Example: Submarine Communication

Consider a submarine at a depth of z = 100 m. We
would like to communicate with this submarine using a
VLF f = 3 kHz. The conductivity of sea water is
σ = 4 Sm−1, ǫr = 81, and µ ≈ 1.
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Ocean Water Conductivity

Note that we are forced to use low frequencies due to
the conductivity of the ocean water. The loss
conductive tangent

tan δc =
σ

ωǫ
∼ 105 ≫ 1

Thus the ocean is a good conductor even at 3 kHz

The propagation loss and constant are thus equal

α = β =

√
ωµσ

2
≈ 0.2
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Ocean Water Wave Propagation

The wavelength in seawater is much smaller than in air
(λ0 = 100 km in air)

λ =
2π

β
= 29 m

Thus the phase velocity of the wave is also much
smaller

vp = fλ ≈ 9 × 104 m/s

The skin-depth, or the depth at which the wave is
attenuated to about 37 % of its value, is given by

δ =
1

α
= 4.6 m
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Ocean Water Fields

The wave impedance is complex with a phase of 45◦

|ηc| =

√
µω

σ
≈ 8 × 10−2 Ω

∠ηc = ej45◦

Notice that ηc ≪ η0, the ocean water thus generates a
very large magnetic field for wave propagation

H =
E0

ηc
e−αz cos(6π × 103t − βz − φη)

Where φη is the angle of the complex wave impedance,
45◦ in this particular case
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Ship to Submarine Communication

Now let’s compute the required transmission power if
the receiver at the depth of z = 100 m is capable of
receiving a signal of at least 1 µV/m

Side-note: the receiver sensitivity is set by the noise
power at the input of the receiver. If the signal is too
small, it’s swamped by the noise.

E0e
−αz ≥ Emin = 1 µV/m

This requires E0 = 2.8 kV/m, and a corresponding
magnetic field of H0 = E0/ηc = 37 kA/m
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Poynting Vector in Ocean Water

This is a very large amount of power to generate at the
source. The power density at the source is

Sav =
1

2
ℜ(E × H∗)

Sav =
1

2
(2.84 × 37 cos(45◦)) = 37 MW/m2

At a depth of 100 m, the power density drops to
extremely small levels

Sav(100m) = 4.6 × 10−12 MW/m2
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Reflections from a Perfect Conductor

Consider a plane wave incident
normally onto a conducting surface

Ei = x̂Ei0e
−jβ1z

Hi = ŷ
Ei0

η0
e−jβ1z

The reflected wave (if any) has the
following form

Er = x̂Er0e
jβ1z

Hr = −ŷ
Er0

η0
ejβ1z

Ei

Hi

Er

Hr

Si

Sr

=
∞

σ
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Boundary Conditions at Interface

The conductor forces the tangential electric field to
vanish at the surface z = 0

E(z = 0) = 0 = x̂(Ei0 + Er0)

This implies that the reflected wave has equal and
opposite magnitude and phase

Er0 = −Ei0

This is similar to wave reflection from a transmission
line short-circuit load.
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Total Field

We can now write the total electric and magnetic field in
region 1

E(z) = x̂Ei0(e
−jβ1z − ejβ1z) = −x̂Ei0j2 sin(β1z)

H(z) = ŷ
Ei0

η0
(e−jβ1z + ejβ1z) = ŷ

Ei0

η0
2 cos(β1z)

The net complex power carried by the wave

E × H∗ = −ẑ
E2

i0

η0
4j sin(β1z) cos(β1z)

is reactive. That means that the average power is zero

Sav =
1

2
ℜ(E × H∗) = 0
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Standing Wave

The reflected wave interferes with the incident wave to
create a standing wave

E(z, t) = ℑ(E(z)ejωt) = ℑ(Ei0j2 sin(β1z)ejωt)

E(z, t) = 2Ei0 sin(β1z) cos(ωt)

H(z, t) =
2Ei0

η1
cos(β1z) sin(ωt)

Note that the E and H fields are in time quadrature (90◦

phase difference)

The instantaneous power is given by

S =
4E2

i0

η1
sin(β1z) cos(β1z)
︸ ︷︷ ︸

2 sin(2β1z)

cos(ωt) sin(ωt)
︸ ︷︷ ︸

2 sin(2ωt)
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Standing Wave Power

The electric and magnetic powers are readily calculated

we =
1

2
ǫ1|E1|2 = 2ǫ1|Ei0|2 sin2(β1z) cos2(ωt)

wm =
1

2
µ1|H1|2 = 2ǫ1|Ei0|2 cos2(β1z) sin2(ωt)

Note that the magnetic field at the boundary of the
conductor is supported (or equivalently induces) a
surface current

Js = n̂×H = −x̂
2Ei0

η1
A/m

If the material is a good conductor, but lossy, then this
causes power loss at the conductor surface.
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Normal Incidence on a Dielectric

Ei

Hi

Er

Hr

Si

Sr

Ht

S

Et

t

Consider an incident wave onto a dielectric region.
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Normal Incidence on a Dielectric

We have the incident and possibly reflected waves

Ei = x̂Ei0e
−jβ1z

Hi = ŷ
Ei0

η1
e−jβ1z

Er = x̂Er0e
jβ1z

Hr = −ŷ
Er0

η1
ejβ1z

But we must also allow the possibility of a transmitted
wave into region 2

Et = x̂Et0e
−jβ2z

Ht = ŷ
Et0

η2
e−jβ2z
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Dielectric Boundary Conditions

At the interface of the two dielectrics, assuming no
interface charge, we have

Et1 = Et2

Ei0 + Er0 = Et0

Ht1 = Ht2

Ei0

η1
− Er0

η1
=

Et0

η2

We have met these equations before. The solution is

Er0 =
η2 − η1

η2 + η1
Ei0

Et0 =
2η2

η2 + η1
Ei0
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Transmission Line Analogy

z = 0

η1 η2β1 β2

These equations are identical to the case of the
interface of two transmission lines

The reflection and transmission coefficients are thus
identical

ρ =
Er0

Ei0
=

η2 − η1

η2 + η1

τ =
Et0

Ei0
= 1 + ρ
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Harder Example

Consider three dielectric
materials. Instead of solving
the problem the long way,
let’s use the transmission line
analogy.

First solve the problem at the
interface of region 2 and 3.
Region 3 acts like a load to
region 2. Now transform this
load impedance by the length
of region 2 to present an
equivalent load to region 1.

ǫ1

µ1

ǫ2

µ2

ǫ3

µ3
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Glass Coating

A very practical example is the case of minimizing
reflections for eyeglasses. Due to the impedance
mismatch, light normally reflects at the interface of air
and glass. One method to reduce this reflection is to
coat the glass with a material to eliminate the
reflections.

From our transmission line analogy, we know that this
coating is acting like a quarter wave transmission line
with

η =
√

η0 ηglass
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