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Time-Harmonic Wave Equation

Start by taking the curl of Faraday’s Eq.

∇× (∇× E) = −jω∇× B

∇× H = σE + jωǫE

∇× (∇× E) = −jωµ(σE + jωǫE)

In a source free region, ∇ · E = 0, and thus

∇× (∇× E) = ∇(∇ · E) −∇2
E = −∇2

E

We thus have Helmholtz’ equation

∇2
E − γ2

E = 0

Where γ2 = jωµ(σ + jωǫ) = α + jβ
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Lossy Materials

In addition to conductive losses σ, materials can also
have dielectric and magnetic losses

A lossy dielectric is characterized by a complex
permittivity ǫ = ǫr + jǫi, where ǫi arises due to the phase
lag between the field and the polarization. Likewise
µ = µr + jµi.

Most materials we study are weakly magnetic and thus
µ ≈ µr.

For now assume that ǫ,µ, and σ are real scalar
quantities

Thus

γ =

√

(−ω2ǫµ)(1 +
σ

jωǫ
)
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Propagation Constant and Loss

Let’s compute the real and imaginary part of γ

γ = jω
√

ǫµ
(

1 − j
σ

ωǫ

)
1

2

Consider (1 − jh) = re−jθ, so that

y =
√

1 − jh =
√

re−jθ/2

Note that tan θ = −h, and r =
√

1 + h2. Finally

cos
θ

2
=

√

1 + cos θ

2
=

√

1 + 1

r

2
=

√

r + 1

2r
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Propagation Constant and Loss (cont)

Similarly

sin
θ

2
=

√

1 − cos θ

2
=

√

r − 1

2r

y =
√

re−jθ/2 =

√

r + 1

2
− j

√

r − 1

2
= a + jb

Using the above manipulations, we can now break γ
into real and imaginary components

γ = jω
√

µǫ(a + jb) = −ω
√

µǫb + jω
√

µǫa = α + jβ

α = −ω
√

µǫ

(

−
√

r − 1√
2

)
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Propagation Constant and Loss (final)

We have now finally shown that

α = ω

√

µǫ

2

[

√

1 +
( σ

ωǫ

)2

− 1

]1/2

β = ω

√

µǫ

2

[

√

1 +
( σ

ωǫ

)2

+ 1

]1/2

It’s easy to show that the imaginary part of ǫ can be
lumped into an effective conductivity term

In practice, most materials are either low loss, such that
σeff

ωǫ ≪ 1, or good conductors, such that σeff

ωǫ ≫ 1

In these extreme cases, simplified versions of the above
equations are applicable
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Effective Dielectric Constant

We can also lump the conductivity into an effective
dielectric constant

∇× H = σE + jωǫE = jωǫeffE

where ǫeff = ǫ − jσ/ω. In the low loss case, this is a
good way to include the losses

When ǫ or µ become complex, the wave impedance is
no longer real and the electric and magnetic field fall out
of phase. Since H = E/ηc

ηc =

√

µ

ǫeff
=

√

µ

ǫ − jσ/ω
=

√

µ
ǫ

√

1 − j σ
ωǫ
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Propagation in Low Loss Materials

If σ
ωǫ ≪ 1, then our equations simplify

γ = jω
√

µǫ

(

1 − j
1

2

σ

ωǫ

)

To first order, the propagation constant is unchanged by
the losses (σeff = σ + ωǫ′′)

β = ω
√

µǫ α =
1

2
σeff

√

µ

ǫ

A more accurate expression can be obtained with a 1st
order expansion of (1 + x)n

β = ω
√

µǫ

(

1 +
1

8

(σeff

ωǫ′

)2
)
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Propagation in Conductors

As we saw in the previous lecture, this approximation is
valid when σ

ωǫ ≫ 1

γ = α + jβ =
√

jωµσ = ωµσej45
◦

α = β =

√

ωµσ

2

The phase velocity is given by vp = ω/β

vp =

√

2ω

µσ

This is a function of frequency! This is a very dispersive
medium.
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Waves in Conductors

The wavelength is given by

λ =
vp

f
= 2

√

π

fµσ

Example: Take σ = 107 S/m and f = 100 MHz. Using
the above equations

λ = 10−4 m

vp = 104 m/s

Note that λ0 = 3 m in free-space, and thus the wave is
very much smaller and much slower moving in the
conductor
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Energy Storage and Loss in Fields

We have learned that the power density of electric and
magnetic fields is given by

wm =
1

2
E · D =

1

2
ǫE2

wm =
1

2
H · B =

1

2
µH2

Also, the power loss per unit volume due to Joule
heating in a conductor is given by

ploss = E · J

Using J = ∇× H − ∂D

∂t , this can be expressed as

E · J = E · ∇ × H − ∂

∂t
(∇× D)
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Poynting Vector

We will demonstrate that the Poynting vector E × H

plays an important role in the energy of an EM field.

∇ · (E × H) = H · (∇× E) − E · (∇× H)

E · J = H · (∇× E) −∇ · (E × J) − E · ∂D

∂t

= H · (−∂B

∂t
) − E · ∂D

∂t
−∇ · (E × H)

H · ∂B

∂t
= H ·

(

∂µH

∂t

)

=
1

2

∂µH · H
∂t

=
1

2

∂µ|H|2
∂t

E · ∂D

∂t
= E ·

(

∂ǫE

∂t

)

=
1

2

∂ǫE · E
∂t

=
1

2

∂µ|E|2
∂t

University of California, Berkeley EECS 117 Lecture 21 – p. 12/18



Poynting’s Theorem

Collecting terms we have shown that

E · J = − ∂

∂t

(

1

2
µ|H|2

)

− ∂

∂t

(

1

2
ǫ|E|2

)

−∇ · (E × H)

Applying the Divergence Theorem
∫

V
E · JdV = − ∂

∂t

∫

V

(

1

2
µ|H|2 +

1

2
ǫ|E|2

)

dV −
∫

S
E × HdV

The above equation can be re-stated as

power
dissipated in

volume V (heat)

=
rate of change

of energy
storage in
volume V

−
a surface

integral over the
volume of

E × H
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Interpretation of the Poynting Vector

We now have a physical interpretation of the last term in
the above equation. By the conservation of energy, it
must be equal to the energy flow into or out of the
volume

We may be so bold, then, to interpret the vector
S = E × H as the energy flow density of the field

While this seems reasonable, it’s important to note that
the physical meaning is only attached to the integral of
S and not to discrete points in space
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Current Carrying Wire

I I

B =
µ0I

2πr

Consider the above wire carrying a uniform current I

From circuit theory we know that the power loss in the
wire is simply I2R. This is easily confirmed

PL =

∫

V
E · JdV =

∫

V

1

σ
J · JdV =

1

A2σ
intV I2dV

PL =
A · ℓ
A2σ

I2 =
ℓ

Aσ
I2
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Energy Stored around a Wire Section

Let’s now apply Poynting’s Theorem. Since the current
is dc, we can neglect all time variation ∂

∂t = 0 and thus
the energy storage of the system is fixed in time.

The magnetic field around the wire is simply given by

H = φ̂
I

2πr

The electric field is proportional to the current density.
At the surface of the wire

E =
1

σ
J =

I

σA
ẑ
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Power Loss in Wire

I IH

E

S

The Poynting vector at the surface thus points into the
conductor

S = E × H =
I

σA
ẑ × φ̂

I

2πr
=

−r̂I2

2πrσA

The power flow into the wire is thus given by

∫

s
S · ds =

∫ ℓ

0

∫ 2π

0

I2

2πrσA
rdθdz = I2R

This result confirms that the energy flowing into the wire
from the field is heating up the wire.
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Sources and Fields

This result is surprising because it hints that the signal
in a wire is carried by the fields, and not by the charges.

In other words, if a signal propagates down a wire, the
information is carried by the fields, and the current flow
is impressed upon the conductor from the fields.

We know that the sources of EM fields are charges and
currents. But we also know that if the configuration of
charges changes, the fields “carry” this information
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