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Maxwell’s Eq. in Source Free Regions

In a source free region ρ = 0 and J = 0

∇ · D = 0

∇ · B = 0

∇× E = −∂B

∂t
= −µ

∂H

∂t

∇× H =
∂D

∂t
= ǫ

∂E

∂t

Assume that E and H are uniform in the x-y plane so
∂
∂x = 0 and ∂

∂y = 0

For this case the ∇× E simplifies
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Curl E for Plane Uniform Fields

Writing out the curl of E in rectangular coordinates

∇× E =






x̂ ŷ ẑ

0 0 ∂
∂z

Ex Ey Ez






(∇× E)x = −∂Ey

∂z
= −µ

∂Hx

∂dt

(∇× E)y = −∂Ex

∂z
= −µ

∂Hy

∂dt

(∇× E)z = 0 = −µ
∂Hz

∂dt
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Curl of H for Plane Uniform Fields

Similarly, writing out the curl H in rectangular
coordinates

∇× H = ǫ
∂E

∂t

−∂Hy

∂z
= ǫ

∂Ex

∂t

∂Hx

∂z
= ǫ

∂Ey

∂t

0 = ǫ
∂Ez

∂t

Time variation in the ẑ direction is zero. Thus the fields
are entirely transverse to the direction of propagation.
We call such fields TEM “waves”
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Polarized TEM Fields

For simplicity assume Ey = 0. We say the field polarized
in the x̂-direction. This implies that Hx = 0 and Hy 6= 0

∂Ex

∂z
= −µ

∂Hy

∂t

−∂Hy

∂z
= ǫ

∂Ex

∂t

∂2Ex

∂z2
= −µ

∂2Hy

∂z∂t

∂2Hy

∂z∂t
= −ǫ

∂2Ex

∂t2
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One Dimensional Wave Eq.

We finally have it, a one-dimensional wave equation

∂2Ex

∂z2
= µǫ

∂2Ex

∂t2

Notice similarity between this equation and the wave
equation we derived for voltages and currents along a
transmission line

As before, the wave velocity is v = 1√
µǫ

The general solution to this equation is

Ex(z, t) = f1(t −
z

v
) + f2(t +

z

v
)
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Wave Solution

Let’s review why this is the general solution

∂Ex

∂t
= f ′

1 + f ′
2

∂2Ex

∂t2
= f ′′

1 + f ′′
2

∂Ex

∂z
= −1

v
f ′
1 +

1

v
f ′
2

∂2Ex

∂z2
=

1

v2
f ′′
1 +

1

v2
f ′′
2

A point on the wavefront is defined by (t − z/v) = c
where c is a constant. The velocity of this point is
therefore v

1 − 1

v

∂z

∂t
= 0

∂z

∂t
= v
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Wave Velocity

We have thus shown that the velocity of this wave
moves is

v = c =
1

√
µǫ

In free-space, c ≈ 3 × 108m/s, the measured speed of
light

In a medium with relative permittivity ǫr and relative
permeability µr, the speed moves with effective velocity

v =
c

√
µrǫr

This fact alone convinced Maxwell that light is an EM
wave
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Sinusoidal Plane Waves

For time-harmonic fields, the equations simplify

dEx

dz
= −jωµHy

dHy

dz
= jωǫEx

This gives a one-dimensional Helmholtz equation

d2Ex

d2z
= −ω2µǫEx
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Solution of Helmholtz’ Eq.

The solution is now a simple exponential

Ex = C1e
−jkz + C2e

jkz

The wave number is given by k = ω
√

µǫ = ω
v

We can recover a traveling wave solution

Ex(z, t) = ℜ
(
Exejωt

)

Ex(z, t) = ℜ
(

C1e
j(ωt−kz) + C2e

j(ωt+kz)
)

Ex(z, t) = C1 cos (ωt − kz) + C2 cos (ωt + kz)

The wave has spatial variation λ = 2π
k = 2πv

ω = v
f
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Magnetic Field of Plane Wave

We have the following relation

Hy = − 1

jωµ

dEx

dz
= − 1

jωµ

(

−jkC1e
−jkz + C2jkejkz

)

Hy =
k

µω

(

C1e
−jkz − C2jkejkz

)

By definition, k = ω
√

µǫ

Hy =

√
ǫ

µ

(

C1e
−jkz − C2e

jkz
)

The ratio E+
x and H+

y has units of impedance and is

given by the constant η =
√

µ/ǫ. η is known as the
impedance of free space
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Plane Waves

Plane waves are the simplest wave solution of
Maxwell’s Eq. They seem to be a gross
oversimplification but they nicely approximate real
waves that are distant from their source

source of radiation

wavefront at distant points
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Wave Equation in 3D

We can derive the wave equation directly in a
coordinate free manner using vector analysis

∇×∇× E = ∇×−µ
∂H

∂t
= µ

∂ (∇× H)

∂t

Substitution from Maxwell’s eq.

∇× H =
∂D

∂t
= ǫ

∂E

∂t

∇×∇× E = −µǫ
∂2E

∂t2
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Wave Eq. in 3D (cont)

Using the identity ∇×∇× E = −∇2E + ∇ (∇ · E)

Since ∇ · E = 0 in charge free regions

∇2E = µǫ
∂2E

∂t2

In Phasor form we have k2 = ω2µǫ

∇2E = −k2E

Now it’s trivial to get a 1-D version of this equation

∇2Ex = µǫ
∂2Ex

∂t2
∂2Ex

∂x2
= µǫ

∂2Ex

∂t2
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Penetration of Waves into Conductors

Inside a good conductor J = σE

In the time-harmonic case, this implies the lack of free
charges

∇× H = J + ǫ
∂E

∂t
= (σ + jωǫ)E

Since ∇ · ∇ × H ≡ 0, we have

(σ + jωǫ)∇ · E ≡ 0

Which in turn implies that ρ = 0

For a good conductor the conductive currents
completely outweighs the displacement current, e.g.
σ ≫ ωǫ
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Conductive vs. Displacement Current

To see this, consider a good conductor with σ ∼ 107S/m
up to very high mm-wave frequencies f ∼ 100GHz

The displacement current is still only

ωǫ ∼ 101110−11 ∼ 1

This is seven orders of magnitude smaller than the
conductive current

For all practical purposes, therefore, we drop the
displacement current in the volume of good conductors
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Wave Equation inside Conductors

Inside of good conductors, therefore, we have

∇× H = σE

∇×∇× E = ∇ (∇ · E) −∇2E = −∇2E = −jωµ∇× H

∇2E = jωµσE

One can immediately conclude that J satisfies the same
equation

∇2J = jωµσJ

Applying the same logic to H, we have

∇×∇× H = ∇ (∇ · H)−∇2H = −∇2H = (jωǫ+σ)∇× E

∇2H = jωµσH
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Plane Waves in Conductors

Let’s solve the 1D Helmholtz equation once again for
the conductor

d2Ez

d2x
= jωµσEz = τ2Ez

We define τ2 = jωµσ so that

τ =
1 + j√

2

√
ωµσ

Or more simply, τ = (1 + j)
√

πfµσ = 1+j
δ

The quantity δ = 1√
πfµσ

has units of meters and is an

important number
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Solution for Fields

The general solution for the plane wave is given by

Ez = C1e
−τx + C2e

τx

Since Ez must remain bounded, C2 ≡ 0

Ez = E0e
−τx = Exe−x/δ

︸ ︷︷ ︸

mag

e−jx/δ
︸ ︷︷ ︸

phase

Similarly the solution for the magnetic field and current
follow the same form

Hy = H0e
−x/δe−jx/δ

Jz = J0e
−x/δe−jx/δ
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Penetration Depth

The wave decays exponentially into the conductor. For
this reason, δ is called the penetration depth, or more
commonly, the skin depth. The fields drop to 1/e of their
values after traveling one skin depth into the conductor.
After several skin depths, the fields are essentially zero

You may also say that the wave exists only on the “skin”
of the conductor

For a good conductor at f = 1GHz

δ =
1√

µσfπ
∼ 10−6m

As the frequency is increased, δ → 0, or the fields
completely vanish in the volume of the conductor
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Total Current in Conductor

Why do fields decay in the volume of conductors?

The induced fields cancel the incoming fields. As
σ → ∞, the fields decay to zero inside the conductor.

The total surface current flowing in the conductor
volume is given by

Jsz =

∫ ∞

0
Jzdx =

∫ ∞

0
J0e

−(1+j)x/δdx

Jsz =
J0δ

1 + j

At the surface of the conductor, Ez0 = J0

σ
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Internal Impedance of Conductors

Thus we can define a surface impedance

Zs =
Ez0

Jsz
=

1 + j

σδ

Zs = Rs + jωLi

The real part of the impedance is a resistance

Rs =
1

δσ
=

√

πfµ

σ

The imaginary part is inductive

ωLi = Rs

So the phase of this impedance is always π/4
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Interpretation of Surface Impedance

The resistance term is equivalent to the resistance of a
conductor of thickness δ

The inductance of the surface impedance represents
the “internal” inductance for a large plane conductor

Note that as ω → ∞, Li → 0. The fields disappear from
the volume of the conductor and the internal impedance
is zero

We commonly apply this surface impedance to
conductors of finite width or even coaxial lines. It’s
usually a pretty good approximation to make as long as
the conductor width and thickness is much larger than δ
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