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Energy to “Charge” Transmission Line
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Energy Stored in Inds and Caps (I)

But where is the power going? The line is lossless!

Energy stored by a cap/ind is 1
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At time td, a length of ℓ = vtd has been “charged”:
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Energy Stored (II)

Recall that Z0 =
√

L′/C ′. The total energy stored on the
line at time td = ℓ/v:

Eline(ℓ/v) = ℓL′
V 2

s
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And the power delivered onto the line in time td:
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As expected, the results match (conservation of
energy).
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Transmission Line Termination
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Consider a finite transmission line with a termination
resistance

At the load we know that Ohm’s law is valid: IL = VL/RL

So at time t = ℓ/v, our pulse reaches the load. Since
the current on the T-line is i+ = v+/Z0 = Vs/(Z0 + Rs)
and the current at the load is VL/RL, a discontinuity is
produced at the load.
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Reflections

Thus a reflected wave is created at discontinuity

VL(t) = v+(ℓ, t) + v−(ℓ, t)

IL(t) =
1

Z0

v+(ℓ, t) − 1

Z0

v−(ℓ, t) = VL(t)/RL

Solving for the forward and reflected waves

2v+(ℓ, t) = VL(t)(1 + Z0/RL)

2v−(ℓ, t) = VL(t)(1 − Z0/RL)
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Reflection Coefficient

And therefore the reflection from the load is given by

ΓL =
V −(ℓ, t)

V +(ℓ, t)
=

RL − Z0

RL + Z0

Reflection coefficient is a very important concept for
transmisslin lines: −1 ≤ ΓL ≤ 1

ΓL = −1 for RL = 0 (short)

ΓL = +1 for RL = ∞ (open)

ΓL = 0 for RL = Z0 (match)

Impedance match is the proper termination if we don’t
want any reflections
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Propagation of Reflected Wave (I)

If ΓL 6= 0, a new reflected wave travels toward the
source and unless Rs = Z0, another reflection also
occurs at source!

To see this consider the wave arriving at the source.
Recall that since the wave PDE is linear, a
superposition of any number of solutins is also a
solution.

At the source end the boundary condition is as follows

Vs − IsRs = v+
1

+ v−
1

+ v+
2

The new term v+
2

is used to satisfy the boundary
condition
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Propagation of Reflected Wave (II)

The current continuity requires Is = i+
1
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Propagation of Reflected Wave (III)

So the source terms cancel out and

v+
2

=
Rs − Z0

Z0 + Rs
v−
1

= Γsv
−

1

The reflected wave bounces off the source impedance
with a reflection coefficient given by the same equation
as before

Γ(R) =
R − Z0

R + Z0

The source appears as a short for the incoming wave

Invoke superposition! The term v+
1

took care of the
source boundary condition so our new v+

2
only needed

to compensate for the v−
1

wave ... the reflected wave is
only a function of v−

1
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Bounce Diagram

We can track the multiple reflections with a “bounce
diagram”
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Freeze time

If we freeze time and look at the line, using the bounce
diagram we can figure out how many reflections have
occurred

For instance, at time 2.5td = 2.5ℓ/v three waves have
been excited (v+

1
,v−

1
, v+

2
), but v+

2
has only travelled a

distance of ℓ/2

To the left of ℓ/2, the voltage is a summation of three
components: v = v+

1
+ v−

1
+ v+

2
= v+

1
(1 + ΓL + ΓLΓs).

To the right of ℓ/2, the voltage has only two
components: v = v+

1
+ v−

1
= v+

1
(1 + ΓL).
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Freeze Space

We can also pick at arbitrary point on the line and plot
the evolution of voltage as a function of time

For instance, at the load, assuming RL > Z0 and
RS > Z0, so that Γs,L > 0, the voltage at the load will will

increase with each new arrival of a reflection

v+

1 = .4
v−1 = .2 v+

2 = .04 v−2 = .02 v+

3 = .004 v−3 = .002

Rs = 75Ω

RL = 150Ω

Γs = 0.2

ΓL = 0.5

vss = 2/3V.6 .64 .66 .664 .666

td 2td 3td 4td 5td 6td

vL(t)

t
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Steady-State Voltage on Line (I)

To find steady-state voltage on the line, we sum over all
reflected waves:

vss = v+
1

+ v−
1

+ v+
2

+ v−
2

+ v+
3

+ v−
3

+ v+
4

+ v−
4

+ · · ·

Or in terms of the first wave on the line

vss = v+
1

(1+ΓL +ΓLΓs +Γ2
LΓs +Γ2

LΓ2
s +Γ3

LΓ2
s +Γ3

LΓ3
s + · · ·

Notice geometric sums of terms like Γk
LΓk

s and Γk+1

L Γk
s .

Let x = ΓLΓs:

vss = v+
1

(1 + x + x2 + · · · + ΓL(1 + x + x2 + · · ·))
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Steady-State Voltage on Line (II)

The sums converge since x < 1

vss = v+
1

(

1

1 − ΓLΓs
+

ΓL

1 − ΓLΓs

)

Or more compactly

vss = v+
1

(

1 + ΓL

1 − ΓLΓs

)

Substituting for ΓL and Γs gives

vss = Vs
RL

RL + Rs
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What Happend to the T-Line?

For steady state, the equivalent circuit shows that the
transmission line has disappeared.

This happens because if we wait long enough, the
effects of propagation delay do not matter

Conversly, if the propagation speed were infinite, then
the T-line would not matter

But the presence of the T-line will be felt if we
disconnect the source or load!

That’s because the T-line stores reactive energy in the
capaciance and inductance

Every real circuit behaves this way! Circuit theory is an
abstraction
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PCB Interconnect

Suppose ℓ = 3cm, v = 3 × 108m/s, so that
tp = ℓ/v = 10−10s = 100ps

On a time scale t < 100ps, the voltages on interconnect
act like transmission lines!

Fast digital circuits need to consider T-line effects

conductor
ground

dielectric

logic gate

PCB substrate
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Example: Open Line (I)

Source impedance is Z0/4, so Γs = −0.6, load is open
so ΓL = 1

As before a positive going wave is launched v+
1

Upon reaching the load, a reflected wave of of equal
amplitude is generated and the load voltage overshoots
vL = v+

1
+ v−

1
= 1.6V

Note that the current reflection is negative of the voltage

Γi =
i−

i+
= −v−

v+
= −Γv

This means that the sum of the currents at load is zero
(open)
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Example: Open Line (II)

At source a new reflection is created v+
2

= ΓLΓsv
+
1

, and
note Γs < 0, so v+

2
= −.6 × 0.8 = −0.48.

At a time 3tp, the line charged initially to v+
1

+ v−
1

drops
in value

vL = v+
1

+ v−
1

+ v+
2

+ v−
2

= 1.6 − 2 × .48 = .64

So the voltage on the line undershoots < 1

And on the next cycle 5tp the load voltage again
overshoots

We observe ringing with frequency 2tp
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Example: Open Line Ringing

Observed waveform as a function of time.
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Physical Intuition: Shorted Line (I)

The intitial step charges the “first” capacitor through the
“first” inductor since the line is uncharged

There is a delay since on the rising edge of the step, the
inductor is an open

Each successive capacitor is charged by “its” inductor
in a uniform fashion ... this is the forward wave v+

1

L L L L

i+

v+ v+ v+ v+
vL = 0

i+ i+ i+
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Physical Intuition: Shorted Line (II)

The volage on the line goes up from left to right due to
the delay in charging each inductor through the
inductors

The last inductor, though, does not have a capacitor to
charge

Thus the last inductor is discharged ... the extra charge
comes by discharging the last capacitor

As this capacitor discharges, so does it’s neighboring
capacitor to the left

Again there is a delay in discharging the caps due to
the inductors

This discharging represents the backward wave v−
1
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