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Magnetic Energy of a Circuit

Last lecture we derived that the total magnetic energy in
a circuit is given by
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We would like to show that this implies that M ≤
√
L1L2.

Let’s re-write the above into the following positive
definite form
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An important observation is that regardless of the
current I1 or I2, the magnetic energy is non-negative, so
Em ≥ 0
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Magnetic Energy is Always Positive

Consider the current I2 = −L1

M
I1, which cancels the first

term in Em

Em =
1

2
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L2 −
M2
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)

I2

2 ≥ 0

Since I2
2
≥ 0, we have

L2 −
M2

L1

≥ 0

Therefore it’s now clear that this implies

L1L2 ≥M2
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Coupling Coefficient

Usually we express this inequality as

M = k
√

L1L2

Where k is the coupling coefficient between two
circuits, with |k| ≤ 1.

If two circuits are perfectly coupled (all flux from circuit
one crosses circuit 2), k = 1 (ideal transformer)

Note that M < 0 implies that k < 0, which is totally
reasonable as long as k lies on the unit interval
−1 ≤ k ≤ 1

Negative coupling just means that the flux gets inverted
before crossing the second circuit. This is easily
achieved by winding the circuits with opposite
orientation.
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Motion in Magnetic Field
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Consider moving a bar in a
constant magnetic field

The conductors therefore
feel a force

Fm = qv × B

This causes charge separation and thus the generation
of an internal electric field that cancels the magnetic
field

E = v × B
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Motion (cont)
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The induced voltage in the bar

Vind = −
∫

2

1

E · dℓ =

∫

2

1

(v × B) · dℓ
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A Moving Metal Bar
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Consider the following “generator”. A bar of length ℓ
moves to the right with velocity v0 (always making
contact with the rest of the circuit)

Vind =

∫

C

(v × B) · dℓ =

∫ D

C

(x̂v0 × ẑB0) · ŷdy = −v0B0ℓ

Current I flows in a direction to decrease the flux
(Lenz’s Law)
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Energy Dissipated by R

This current flows through the resistor RL where the
energy of motion of the bar is converted to heat

The load will dissipate energy

PL = I2RL =
(v0B0ℓ)

2

RL

This power comes from the mechanical work in moving
the bar. The force experienced by a current carrying
wire dF = Idℓ× B

Fm = I

∫ D

C

dℓ× B = I

∫ D

C

−ŷdy × ẑB0 = −IB0ℓ

Thus Pin = −Fmv0 = IB0ℓv0 = PL
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(im)Practical Example

Let’s say we do this experiment using the earth’s
magnetic field

Use a bar with length ℓ = 1 m, B0 = 0.5 G

To induce only 1 V, we have to move the bar at a speed
of

v0 =
Vind

B0ℓ
= 2 × 104 m/s

The magnetic field on the surface of a neutron star is
about B0 ≈ 1012 G, or about 108 T. Even moving at a
speed of v0 = 1 m/s, we generate

Vind = 108 V

Energy generation on a neutron star is easy!
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Back to Faraday’s Equation

Note that this problem is just as easy to solve using
Faraday’s Law

The flux crossing the loop is increasing at a constant
rate

ψ(t) = ψ0 + ℓv0tB0

Where ψ0 is the initial flux at t = 0

The induced voltage is simply

Vind = −dψ
dt

= ℓv0B0
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An AC “Generator”

B

sinusoidal motion

+

V
−

If we connect our metal bar to a piston, in turn
connecting to a water-wheel or otherwise rotating
wheel, we have a crude generator

To generate substantial voltage, we need a strong
magnetic field

Say we rotate the wheel at a rate of ω = 2π × 103s−1, or
1000 RPS (revolutions per second)
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An AC “Generator” (cont)

The flux is now

ψ = ψ0 + ℓ ·B0 · Am cosωt

Where Am is the amplitude of oscillation. Taking the
time derivative

ψ̇ = −AmωℓB0 sinωt = −Vind

Plugging in some numbers, we see that with a relatively
strong magnetic field of 1 T, an amplitude Am = 1 m,
ℓ = 1 m, the voltage generated is “reasonable”

Vind = 2π × 103 sinωt

The voltage is sinusoidal with frequency equal to the
rotation frequency
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AC Motor/Generator

I

B0 = x̂B0

ω

φ

I

A simple AC motor/generator consists of a rotating loop
cutting through a constant magnetic field. The slip rings
maintain contact with the loop as it rotates.
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AC Motor/Generator

If AC current is passed through the loop, it rotates at a
rate determined by the frequency. If, on the other hand,
the loop is rotated mechanically and the circuit is closed
with a load, mechanical power is converted to electricity

The flux in the loop of area A is simply

Ψ = AB0 cosφ

The phase φ = ω0t so

Vind = −Ψ̇ = AB0ω0 sinω0t

This result can also be derived by using Fm = qv × B
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Maxwell’s Eq (Integral Form)

We have now studied the complete set of Maxwell’s
Equations . In Integral form

∮

C

E · dℓ = − d

dt

∫

S

B · dS

∮

C

H · dℓ =
d

dt

∫

S

D · dS +

∫

S

J · dS

∮

S

D · dS =

∫

V

ρdV

∮

S

B · dS = 0
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Maxwell’s Eq (Differential Form)

The fields are related by the following material
parameters

B = µH D = ǫE J = σE

For most materials we assume that these are scalar
relations.

∇× E = −∂B
∂t

∇× B = −ǫ0µ0

∂E

∂t
+ µ0(J +

∂P

∂t
+ ∇× M)

∇ · E =
1

ǫ0
(ρ−∇ · P)

∇ · B = 0
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Source Free Regions

In source free regions ρ = 0 and J = 0. Assume the
material is uniform (no bound charges or currents)

∇× E = −∂B
∂t

∇× B = ǫ0µ0

∂E

∂t

∇ · E = 0

∇ · B = 0
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Wave Motion

B

E E E

BB

wave motion

We can see intuitively that ∂E

∂t
→ ∂B

∂t
→ ∂E

∂t
→ . . ., that

wave motion is possible
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Time Harmonic Maxwell’s Eq.

Under time-harmonic conditions (many important
practical cases are time harmonic, or nearly so, or else
Fourier analysis can handle non-harmonic cases)

∇× E = −jωB

∇× H = J + jωD

∇ · E = ρ

∇ · B = 0

These equations are not all independent. Take the
divergence of the curl, for instance

∇ · (∇× E) ≡ 0 = −jω∇ · B
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Harmonic Eq. (cont)

In other words, the non-existence of magnetic charge is
built-in to our curl equation. If magnetic charge is ever
observed, we’d have to modify our equations

This is analogous to the displacement current that
Maxwell introduced to make the curl of H equation
self-consistent

∇ · (∇× H) ≡ 0 = ∇ · J + jω∇ · D

∇ · J = −∂ρ
∂t

= −jωρ

This implies that ∇ · D = ρ, so Gauss’ law is built-in to
our curl equations as well.
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Tangential Boundary Conditions

The boundary conditions on the E-field at the interface
of two media is

n̂ × (E1 − E2) = 0

Or equivalently, E1t = E2t. If magnetic charges are ever
found, then this condition will have to include the
possibility of a surface magnetic current

The boundary conditions on H are similar

n̂ × (H1 − H2) = Js

For the interface of a perfect conductor, for example, a
surface current flows so that (H2 = 0)

n̂ × H1 = Js
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Boundary Conditions for Current

Applying the “pillbox” argument to the divergence of
current

∫

V

(∇ · J)dV =

∮

S

J · dS = −
∫

V

∂ρ

∂t
dV

in the limit

J1n − J2n = −∂ρs

∂t

where ρs is the surface current. In the static case

J1n = J2n

implies that σ1E1 = σ2E2. This implies that ρs 6= 0 since
ǫ1E1 6= ǫ2E2 (unless the ratios of σ match the ratio of ǫ
perfectly!)
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