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Energy for a System Of Current Loops

I1

I2

IN

In the electrostatic case, we assembled our charge
distribution one point charge at a time and used electric
potential to calculate the energy

This can be done for the magnetostatic case but there
are some complications.
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Energy for Two Loops

I1

I2
B

ψ

As we move in our second loop with current I2, we’d be
cutting across flux from loop 1 and therefore an induced
voltage around loop 2 would change the current. When
we bring the loop to rest, the induced voltage would
drop to zero.

To maintain a constant current, therefore, we’d have to
supply a voltage source in series to cancel the induced
voltage. The work done by this voltage source
represents the magnetostatic energy in the system.
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Energy for Two Loops (another way)

A simpler approach is to bring in the two loops with zero
current and then increase the current in each loop one
at a time

First, let’s increase the current in loop 1 from zero to I1
in some time t1. Note that at any instant of time, a
voltage is induced around loop number 1 due to it’s
changing flux

vind,1 = −
dψ

dt
= −L1

di1
dt

where i1 represents the instantaneous current.
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Current in Loop 1 (I)

I1

I2 = 0

ψ2 6= 0

ψ1 6= 0

−vind,2

−vind,1

Note that this induced voltage will tend to decrease the
current in loop 1. This is a statement of Lenz’s law. In
other words, the induced voltage in loop 1 tends to
create a magnetic field to oppose the field of the
original current!

To keep the current constant in loop 1, we must connect
a voltage source to cancel the induced voltage
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Work Done by Source 1

The work done by this voltage source is given by

w1 =

∫ t1

0

p(τ)dτ

where p(t) = −vind,1i1(t) = L1i1
di1
dt

The net work done by the source is simply

w1 = L1

∫ t1

0

i1
di1
dτ
dτ = L1

∫ I1

0

i1di1 =
1

2
L1I

2

1
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Current in Loop 1 (II)

Note that to keep the current in loop 2 equal to zero, we
must also provide a voltage source to counter the
induced voltage

vind,2(t) = −M21

di1
dt

This voltage source does not do any work since
i2(t) = 0 during this time
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Current in Loop 2 (I)

By the same argument, if we increase the current in
loop 2 from 0 to I2 in time t2, we need to do work equal
to 1

2
L2I

2
2
.

But is that all? No, since to keep the current in loop 1
constant at I1 we must connect a voltage source to
cancel the induced voltage

−vind,1 =
dψ1

dt
= M12

di2
dt

The additional work done is therefore

w′
1 =

∫ t2

0

M12

di2
dτ
I1dτ = M12I1I2
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Energy for Two Loops

The total work to bring the current in loop 1 and loop 2
to I1 and I2 is therefore

W =
1

2
L1I

2

1 +
1

2
L2I

2

2 +M12I1I2

But the energy should not depend on the order we turn
on each current. Thus we can immediately conclude
that M12 = M21

We already saw this when we derived an expression for
M12 using the Neumann equation
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Generalize to N Loops

We can now pretty easily generalize our argument for 2
loops to N loops

W =
1

2

∑

i

LiI
2

i +
∑ ∑

i>j

MijIiIj

The first term represents the “self” energy for each loop
and the second term represents the interaction terms.
Let’s rewrite this equation and combine terms

W =
1

2

∑ ∑

i=j

MijIiIj +
1

2

∑ ∑

i 6=j

MijIiIj

W =
1

2

∑

i

∑

j

MijIiIj
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Neumann’s Equation

We derived the mutual inductance between two
filamentary loops as Neumann’s equation

Mij =
µ0

4π

∮

Ci

∮

Cj

dℓi · dℓj
Rij

Let’s substitute the above relation into the expression
for energy

W =
1

2

∑

i

Ii





∑

j

MijIj





W =
1

2

∑

i

Ii





∑

j

Ij
µ0

4π

∮

Ci

∮

Cj

dℓi · dℓj
Rij
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Rework Expression for Energy

Let’s change the order of integration and summation

W =
1

2

∑

i

Ii

∮

Ci





∑

j

Ij
µ0

4π

∮

Cj

·dℓj
Rij



 · dℓi

Each term of the bracketed expression represents the
vector potential due to loop j evaluated at a position on
loop i. By superposition, the sum represents the total
voltage potential due to all loops

W =
1

2

∮

Ci

IiA · dℓi
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Energy in terms of Vector Potential

We derived this for filamental loops. Generalize to an
arbitrary current distribution and we have

Wm =
1

2

∫

V

J · AdV

Compare this to the expression for electrostatic energy

We =
1

2

∫

V

ρφdV

Thus the vector potential A really does represent the
magnetic potential due to a current distribution in an
analogous fashion as φ represents the electric potential
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Energy in terms of the Fields

Let’s replace J by Ampère’s law ∇× H = J

Wm =
1

2

∫

V

(∇× H) · AdV

Using the identity

∇ · (H× A) = (∇× H) · A + H · (∇× A)

Wm =
1

2

∫

V

∇ · (H × A)dV +
1

2

∫

V

(∇× A) · HdV

Apply the Divergence Theorem to the first term to give

Wm =
1

2

∫

S

H × A · dS +
1

2

∫

V

(∇× A) · HdV
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Vanishing Surface Term

We’d like to show that the first term is zero. To do this.
Consider the energy in all of space V → ∞. To do this,
consider a large sphere of radius r and take the radius
to infinity

We know that if we are sufficiently far from the current
loops, the potential and field behave like A ∼ r−1 and
H ∼ r−2. The surface area of the sphere goes like r2

The surface integral, therefore, gets smaller and smaller
as the sphere approaches infinity
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Energy in Terms of B and H

The remaining volume integral represents the total
magnetic energy of a system of currents

Wm =
1

2

∫

V

(∇× A) · HdV

But ∇× A = B

Wm =
1

2

∫

V

B · HdV

And the energy density of the field is seen to be

wm = B · H

Recall that we = D · E
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Another Formula for Inductance

The self-inductance of a loop is given by

L =
1

I

∫

S

B · dS

Since the total magnetic energy for a loop is 1

2
LI2, we

have an alternate expression for the inductance

1

2
LI2 =

1

2

∫

V

B · HdV

L =
1

I2

∫

V

B · HdV

This alternative expression is sometimes easier to
calculate
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Self-Inductance of Filamentary Loops

We have tacitly assumed that the inductance of a loop
is a well-defined quantity. But for a filamentary loop, we
can expect trouble.

By definition

L =
1

I

∫

S

B · dS =
1

I

∮

C

A · dℓ

L =
µ

4π

∮

C

∮

C

dℓ′ · dℓ

R

This is just Neumann’s equation with C1 = C2. But for a
filamental loop, R = 0 when both loops traverse the
same point. The integral is thus not defined for a
filamental loop!
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Internal and External Inductance

ψint ψext

It’s common to split the flux in a loop into two
components. One component is defined as the flux
crossing the internal portions of the conductor volume.
The other, is external to the conductors

L =
ψ

I
=
ψint

I
+
ψext

I
= Lint + Lext

University of California, Berkeley EECS 117 Lecture 18 – p. 19/22



Internal Inductance of a Round Wire

Usually if the wire radius is small relative to the loop
area, Lint ≪ Lext

We shall see that at high frequencies, the magnetic field
decays rapidly in the volume of conductors and thus the
ψint → 0 and L(f → ∞) = Lext

Consider a round wire carrying uniform current. We can
easily derive the magnetic field through Amére’s law

Binside =
µ0Ir

2πa2
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Round Wire (cont)

Using this expression, we can find the internal
inductance

Wm =
1

2

∫

V

B·HdV =
1

2

∫

Vinside

B·HdV+
1

2

∫

Voutside

B·HdV+

Wm =
1

2
LintI

2 +
1

2
LextI

2

The “inside” term is easily evaluated

Wm,int =
1

2

µ0I
2

(2πa2)2

∫ a

0

r22πrdr =
1

2

µ0I
2

8π
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Internal Inductance Calculation

The internal inductance per unit length is thus

Lint =
µ0

8π

Numerically, this is 50pH/mm, a pretty small inductance.
Recall that this is only the inductance due to energy
stored inside of the wires. The external inductance is
likely to be much larger.
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