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Energy for a System Of Current L oops
- o

I
SURENE

I
CD
# In the electrostatic case, we assembled our charge
distribution one point charge at a time and used electric

potential to calculate the energy

# This can be done for the magnetostatic case but there
are some complications.

o -
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Energy for Two L oops

/’

® As we move In our second loop with current /5, we'd be
cutting across flux from loop 1 and therefore an induced
voltage around loop 2 would change the current. When
we bring the loop to rest, the induced voltage would
drop to zero.

# To maintain a constant current, therefore, we'd have to
supply a voltage source in series to cancel the induced
voltage. The work done by this voltage source J
represents the magnetostatic energy in the system.
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Energy for Two L oops (another way)
- o

# A simpler approach is to bring in the two loops with zero
current and then increase the current in each loop one
at a time

# First, let’s increase the current in loop 1 from zero to I,
INn some time ¢;. Note that at any instant of time, a
voltage is induced around loop number 1 due to it’s
changing flux

oo odn
ind, 1 At 1dt

# where ¢; represents the instantaneous current.

o -
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Currentin Loop 1(l)
-

I =0

—Vind,2 ‘ \
I
—
Uind,

# Note that this induced voltage will tend to decrease the
current in loop 1. This is a statement of Lenz’s law. In
other words, the induced voltage in loop 1 tends to
create a magnetic field to oppose the field of the
original current!

#® To keep the current constant in loop 1, we must connect
a voltage source to cancel the induced voltage

-
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Work Done by Source 1

- .

# The work done by this voltage source is given by

t1
w1:/ p(T)dT
0

® where p(t) = —vjq1i1(t) = Lyi; %

# The net work done by the source is simply

B diy h 1.,
w1 = Ll/ ild—dT = Ll/ ildil = _L1]1
0 T 0 2

o -
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Currentin Loop 1 (I1)
-

f.o Note that to keep the current in loop 2 equal to zero, we
must also provide a voltage source to counter the
Induced voltage

Vind,2(t) = —M21%

# This voltage source does not do any work since
i2(t) = 0 during this time

o -
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Currentin Loop 2 (I)
- o

# By the same argument, if we increase the current in
loop 2 from 0 to I in time ¢, we need to do work equal

to s Lo13.
# Butis that all? No, since to keep the current in loop 1

constant at /; we must connect a voltage source to
cancel the induced voltage

din dig
—1): = — = —
VUind,1 It M2 7

® The additional work done is therefore

, 20 dig
wy = Mlzd—th = M12]1]2
0 T

o -
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Energy for Two L oops
-

f.o The total work to bring the current in loop 1 and loop 2
to I; and I is therefore

1 1
W = §L1]12 + §L2122 + MioI1 I

# But the energy should not depend on the order we turn
on each current. Thus we can immediately conclude

that Mio = Moy

# We already saw this when we derived an expression for
M5 using the Neumann equation

o -
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Generalizeto N Loops
B ] _ o

# We can now pretty easily generalize our argument for 2
loops to N loops

W == ZL I+ Y Ml
1>7

# The first term represents the “self” energy for each loop
and the second term represents the interaction terms.
Let’s rewrite this equation and combine terms

ZZMZ][[ + = ZZMZ][[

7]

1
L W= Z zj: M ;1 J
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Neumann’s Equation

- .

# We derived the mutual inductance between two
filamentary loops as Neumann’s equation

f{]{ dl; - de;
i =

# Let’s substitute the above relation into the expression
for energy

— %Z[Z ZMZ-jIj
0 J

W:%Zh dt; - dt;
B RS N
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Rework Expression for Energy
B

f.’ Let’s change the order of integration and summation

A,

1 | Ho s
W_§;[Zﬁi ZQZIW?{;j. R;; ati

] —

# Each term of the bracketed expression represents the
vector potential due to loop 5 evaluated at a position on
loop i. By superposition, the sum represents the total

voltage potential due to all loops

W:lfzﬂwm
2 Jo.
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Energy in terms of Vector Potential

- .

# We derived this for filamental loops. Generalize to an
arbitrary current distribution and we have

szl/J-AdV
2 Jy

o Compare this to the expression for electrostatic energy

1
2 Jv

# Thus the vector potential A really does represent the
magnetic potential due to a current distribution in an
analogous fashion as ¢ represents the electric potential

o -
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Energy in termsof the Fields

- .

® Let'sreplace J by Ampereslaw V x H =J

1
Wm:—/(VxH)-AdV
2 Jy

# Using the identity
V- HxA)=(VxH)-A+H - (VxA)

1 1
sz—/v-(HxA)dv+—/(VxA)-Hdv
2 /i 2 [y

# Apply the Divergence Theorem to the first term to give

1 1
Wm:—/HxA-dS+—/(VxA)-HdV
2 /s 2 Jv

o -
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Vanishing Surface Term

- .

# We'd like to show that the first term is zero. To do this.
Consider the energy in all of space V' — oo. To do this,
consider a large sphere of radius r and take the radius
to infinity

# We know that if we are sufficiently far from the current
loops, the potential and field behave like A ~ »—! and
H ~ r—2. The surface area of the sphere goes like 2

# The surface integral, therefore, gets smaller and smaller
as the sphere approaches infinity

o -
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Energy in Termsof B and H
-

The remaining volume integral represents the total
magnetic energy of a system of currents

1
Wm:—/ (Vx A)-HdV
2 Jy
ButVxA=B
1
2 Jv
And the energy density of the field is seen to be

w, = B-H

Recall that w, = D - E J
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Another Formula for I nductance
-

The self-inductance of a loop is given by

L:1/B.ds
I Js

Since the total magnetic energy for a loop is %L[Q, we
have an alternate expression for the inductance

1 1
—L[2:—/B-Hdv
2 2 Jy

1
L=7 [ B-HW

This alternative expression is sometimes easier to

calculate J
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Self-Inductance of Filamentary L oops
B o

# We have tacitly assumed that the inductance of a loop
IS a well-defined quantity. But for a filamentary loop, we
can expect trouble.

# By definition

L:l/B-dS:lij-dZ
I'Js I Je

Lzﬂj{j{dﬂ-dﬁ
47’(00 R

# This is just Neumann’s equation with ¢'; = (5. But for a
filamental loop, k = 0 when both loops traverse the
same point. The integral is thus not defined for a

L filamental loop! J
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| nternal and External | nductance

=

wext

# It's common to split the flux in a loop into two
components. One component is defined as the flux
crossing the internal portions of the conductor volume.

The other, Is external to the conductors

L= % B wz]nt + w;xt — Lint -+ Lext J
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| nternal I nductance of a Round Wire

- .

o Usually if the wire radius is small relative to the loop
area, Lint < Lea:t

# We shall see that at high frequencies, the magnetic field
decays rapidly in the volume of conductors and thus the
Ying — 0a@nd L(f — 00) = Legt

# Consider a round wire carrying uniform current. We can
easily derive the magnetic field through Amere’s law

polr
2ma?

Binside —

o -
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Round Wire (cont)
B o

# Using this expression, we can find the internal

Inductance
1 1 1
W, == | B-HdV == B-HdV +— B-HdV +
2 V 2 ‘/inside 2 Voutside
1 1
W = §Lmt12 + iLemtﬂ

#® The “inside” term is easily evaluated

1 pol? /a 2 1 piol”
W int = = omrdr — ~HO
Tt T 9 (2ma?)? LA T ey

o -
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| nternal | nductance Calculation

- .

# The internal inductance per unit length is thus

Ho

Lint — e

# Numerically, this is 50pH/mm, a pretty small inductance.
Recall that this is only the inductance due to energy
stored inside of the wires. The external inductance is
likely to be much larger.

o -
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