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Memory Aid

The following table is a useful way to remember the
equations in magnetics. We can draw a very good
analogy between the fields a

E H ρ J

D B V A

ǫ µ−1 · ×
P M × ·

aI personally don’t like this choice since to me E and B are “real” and so the

equations should be arranged to magnify this analogy. Unfortunately the equations

are not organized this way (partly due to choice of units) so we’ll stick with conven-

tion
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Boundary Conditions for Mag Field

We have now established the following equations for a
static magnetic field

∇× H = J

∇ · B = 0
∮

C

H · dℓ =

∫

S

J · dS = I

∮

S

B · dS = 0

And for linear materials, we find that H = µ−1B
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Tangential H

The appropriate boundary conditions follow
immediately from our previously established techniques

µ1

µ2

C

Take a small loop intersecting with the boundary and
take the limit as the loop becomes tiny

∫

C

H · dℓ = (Ht1 −Ht2)dℓ = 0
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Tangential H (cont)

So the tangential component of H is continuous

Ht1 = Ht2 µ−1
1 Bt1 = µ−1

2 Bt2

Note that B is discontinuous because there is an
effective surface current due to the change in
permeability. Since B is “real”, it reflects this change

If, in addition, a surface current is flowing in between
the regions, then we need to include it in the above
calculation
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Normal B

µ1

µ2

S
n̂

Consider a pillbox cylinder enclosing the boundary
between the layers

In the limit that the pillbox becomes small, we have
∮

B · dS = (B1n − B2n)dS = 0

And thus the normal component of B is continuous

B1n = B2n
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Boundary Conditions for a Conductor

If a material is a very good conductor, then we’ll show
that it can only support current at the surface of the
conductor.

In fact, for an ideal conductor, the current lies entirely
on the surface and it’s a true surface current

In such a case the current enclosed by even an
infinitesimal loop is finite

∮

C
H · dℓ = (Ht1 −Ht2)dℓ = Jsdℓ Ht1 − Ht2 = Js

This can be expressed compactly as

n̂ × (H1 − H2) = Js

But for a perfect conductor, we’ll see that H2 = 0, so
H1t = Js

n̂ × H1 = Js
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Hall Effect

J

B0

V0

When current is traveling through a conductor, at any
instant it experiences a force given by the Lorentz
equation

F = qE + qv × B

The force qE leads to conduction along the length of the
bar (due to momentum relaxation) with average speed
vd but the magnetic field causes a downward deflection

F = qx̂E0 − qŷvdB0
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Hall Effect: Vertical Internal Field

+ + + + + + +

+ + + + + + +

+

In steady-state, the movement of charge down (or
electrons up) creates an internal electric field which
must balance the downward pull

Thus we expect a “Hall” voltage to develop across the
top and bottom faces of the conducting bar

VH = Eyd = vdB0d
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Hall Effect: Density of Carriers (I)

J

B0

VH
J

Since vd = µEx, and Jx = σEx, we can write vd = µJx/σ

VH =
µJx

σ
B0d

Recall that the conductivity of a material is given by
σ = qNµ, where q is the unit charge

Since vd = µEx, and Jx = σEx, we can write vd = µJx/σ

VH =
µJx

σ
B0d
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Hall Effect: Density of Carriers (II)

Recall that the conductivity of a material is given by
σ = qNµ, where q is the unit charge, N is the density of
mobile charge carriers, and µ is the mobility of the
carriers

VH =
JxB0d

qN

N =
JxB0d

qVH
=

IB0d

AqVH

Notice that all the quantities on the RHS are either
known or easily measured. Thus the density of carriers
can be measured indirectly through measuring the Hall
Voltage
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Forces on Current Loops

F

F1 F2

B

B

x̂

ŷ

ẑ
a

b

I1

I2
F

Since the field is not
uniform, the net force
is not zero. Note the
force on the ⊥ sides
cancel out

F1 = −ŷ
µI1I2
2πa

d F2 = +ŷ
µI1I2

2π(a+ b)
d

F = F1 + F2 = −ŷ
µI1I2d

2π

(
1

a
− 1

b

)
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Torques on Current Loops (I)

B0 B0

free rotation 

about this axis

force down

force up

In a uniform field, the
net force on the cur-
rent loop is zero. But
the net torque is not
zero. Thus the loop
will tend to rotate.

T = r × F

F1 = −I1B0dx̂

F2 = +I1B0dx̂

F1 + F2 = 0
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Torques on Current Loops (II)

F1

F2

I

IB0

θ
θ

x̂

ŷẑ

T1 = −(b/2)I1B0d sin θẑ

T2 = −(b/2)I1B0d sin θẑ

T = T1 + T2 = −ẑB0

moment
︷ ︸︸ ︷

I × b× d
︸ ︷︷ ︸

Area of loop

sin θ

In general the torque can be expressed as

T = m × B

where the moment is defined as m = I × Area
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Electric Motors

I

B0

A DC electric mo-
tor operates on this
principle. A uniform
strong magnetic field
cuts across a current
loop causing it to ro-
tate.

When the loop is || to the field, the torque drops to zero
but the rotational inertia of the loop keeps it rotating.
Simultaneously, the direction of the current is reversed
as the loop flips around and cuts into the field. This
generates a new torque that favors the continuous
rotation.
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Faraday’s Big Discovery

In electrostatics we learned that
∮

E · dℓ = 0

Let’s use the analogy between B and D (and E and H).
Since q = Cv and ψ = Li, and i = q̇ = Cv̇, should we not
expect that ψ̇ = Li̇ = v?

energy of field

converted to heat!

∂B

∂t

R

In fact, this is true!
Faraday was able to
show this experimentally
∮

C

E·dℓ = −dψ
dt

= − d

dt

∫

S

B·dS

The force is no longer
conservative, E 6= −∇φ
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Faraday’s Law in Differential Form

Using Stoke’s Theorem
∫

C

E · dℓ =

∫

S

∇× E · dS = − d

dt

∫

S

B · dS = −
∫

S

∂B

∂t
· dS

Since this is true for any arbitrary curve C, this implies
that

∇× E = −∂B
∂t

Faraday’s law is true for any region of space, including
free space.

In particular, if C is bounded by an actual loop of wire,
then the flux cutting this loop will induce a voltage
around the loop.
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Example: Transformers

V1

I1

V2

I2

+

−

+

−

L1 L2

M
B

+

V1

−

+

V2

−

In a transformer, by definition the flux in the “primary”
side is given by ψ1 = L1I1

Likewise, the flux crossing the “secondary” is given by
ψ2 = M21I1 = M12I1 = MI1 (assuming I2 = 0)

Thus if the current in the primary changes, a voltage is
induced in the secondary

V2 = ψ̇2 = Mİ1
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Generating Sparks!

+
+

V2

−

I1

I1

V2

t

t

large voltage!

large slope

Since the voltage at the secondary is proportional to the
rate of change of current in loop 1, we can generate
very large voltages at the secondary by interrupting the
current with a switch
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Vector Potential

Since ∇ · B ≡ 0, we can write B = ∇× A. Thus

∇× E = −∂B
∂t

= −∂∇× A

∂t
= −∇× ∂A

∂t

If we group terms we have

∇×
(

E +
∂A

∂t

)

= 0

So, as we saw in electrostatics, we can likewise write

E +
∂A

∂t
= −∇φ
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More on Vector Potential

We choose a negative sign for φ to be consistent with
electrostatics. Since if ∂

∂t = 0, this equation breaks
down to the electrostatic case and then we identify φ as
the scalar potential.

This gives us some insight into the electromagnetic
response as

E = −∇φ− ∂A

∂t

E = −∇φ
︸ ︷︷ ︸

electric response

−∂A
∂t

︸ ︷︷ ︸

magnetic response

In reality the EM fields are linked so this viewpoint is not
entirely correct.
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Is the vector potential real?

We can now re-derive Faradays’ law as follows

V =

∮

C

E · dℓ = −
∮

C

∇φ · dℓ− ∂

∂t

∮

C

A · dℓ

The line integral involving ∇φ is zero by definition so we
have the induced emf equal to the line integral of A

around the loop in question

V = − ∂

∂t

∮

C

A · dℓ

We also found that equivalently

V = − ∂

∂t

∫

S

B · dS
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The Reality of the Vector Potential

V = − ∂

∂t

∮

C

A · dℓ

This equation is somewhat more satisfying that
Faraday’s law in terms of the flux. Although it’s
mathematically equivalent, it explicitly shows us the
shape of the loop’s role in determining the induced flux.

The flux equation, though, depends on a surface
bounding the loop, in fact any surface. Sometimes it’s
even difficult to imagine the shape of such a surface
(e.g. a coil)
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Solenoid Transformer

+

V2

−

I1

I1

Consider the magnetic coupling between a solenoid
and a large loop surrounding the solenoid.

We found that for an ideal solenoid, B = 0 outside of the
cylinder. Certainly we can assume that B ≈ 0 outside of
this region.
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Vector Potential Outside of Solenoid

Then the voltage induced into the outer loop only
depends on the constant flux generated within the
center section coincident with the solenoid

What’s disturbing is that even though B = 0 along the
loop, there is a force pushing electrons inside the outer
metal.

The force is therefore not magnetic since B = 0.

The viewpoint with vector potential, though, does not
pose any problems since A 6= 0 outside of the loop.
Therefore when we integrate A outside of the loop,
there is a nonzero result.
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Circuit Application of Transformers

V

+

2

−

+

V1

−

The transformer is a
very important circuit
element

Before switching power
supplies, transformers
were ubiquitous in
voltage/current
transformation
applications (taking wall
voltage of say 120V and
converting it to say 3V).

In fact, the name “trans-
former” comes from this
very application
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Voltage Transformer

V1 = L1
dI1
dt

+M
dI2
dt

V2 = M
dI1
dt

+ L2
dI2
dt

If I2 ≈ 0, or for a light load on the secondary, we have

V1 = L1
dI1
dt

V2 = M
dI1
dt

V2

V1
=
M

L1
= k

√
L1L2

L1
= k

√

L2

L1
= n
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Power Transmission

Transformers are also used to boost the voltage for long
range power transmission

This follows since power loss proportional to I2R, so to
transmit a given power P , it’s best to use the largest
voltage to minimize the current I = P/V .

This is the reason we use AC power versus DC, since
transformers don’t work with DC!
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Summary So Far...

Let’s summarize what we’ve learned thus far. There are
no magnetic charges, so

∇ · B = 0

and electric fields diverge on physical charge

∇ · D = ρ

Faraday’s laws tell us that

∇× E = −∂B
∂t

and Ampère’s law relate magnetic fields to currents by

∇× H = J
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Are These Equations Complete?

Are these equations complete and self-consistent? In
other words, do they over-specify the problem or are
some equations still missing? Furthermore, are they
self-consistent?

Mathematics tells us that ∇ · (∇× H) = 0, which implies
that

∇ · J = 0

But this can only hold for steady fields. In general, by
conservation of charge we know that

∇ · J = −∂ρ
∂t
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Maxwell’s Displacement Current

In other words, we have to add something to the RHS of
Ampére’s eq. to make it self-consistent!

Maxwell was the first to make this observation. Since
∇ · D = ρ, it’s natural to add a displacement current to
the Ampére’s eq.

∇× H = J +
∂D

∂t

This now makes our eq. self-consistent since

∇ · ∇ × H = 0 = ∇ · J + ∇ · ∂D
∂t

∇ · ∇ × H = 0 = ∇ · J +
∂∇ · D
∂t

= ∇ · J +
∂ρ

∂t
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Magnetic Field of a Capacitor

I

S

∂D

∂t

R

V

∫
S

J · dS = 0
S

∫
J · dS = I

C1

Now we can resolve a contradiction in Ampére’s eq. If
we consider the magnetic field of the following circuit,
we know that there is a magnetic field around loop C1

since current cuts through surface S1

But Ampére’s law says that any surface bounded by C1

can be used to calculate the magnetic field. If we use
surface S2, then the current cutting through this surface
is zero, which would yield a zero magnetic field!
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Displacement Current of a Capacitor

The answer to this contradiction is displacement
current. If current is flowing in this circuit, then the
electric field between the capacitor plates must be
changing. Thus ∂D

∂t
6= 0

So the displacement current cutting surface S2 must be
the same as the conductive current cutting through
surface S1 ∫

S1

Jc · dS =

∫

S2

∂D

∂t
· dS
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