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Magnetic Flux

Magnetic flux plays an important
role in many EM problems (in
analogy with electric charge)

Ψ =

∫

S

B · dS

Due to the absence of magnetic
charge

Ψ =

∮

S

B · dS ≡ 0

but net flux can certainly cross
an open surface.

C

S
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Magnetic Flux and Vector Potential

S1

S2

C C

Magnetic flux is independent of the surface but only
depends on the curve bounding the surface. This is
easy to show since

Ψ =

∫

S

B · dS =

∫

S

∇× A · dS =

∮

C

A · dℓ

Ψ =

∫

S1

B · dS =

∫

S2

B · dS
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Flux Linkage

I1

S2

B field

Consider the flux crossing surface S2 due to a current
flowing in loop I1

Ψ21 =

∫

S2

B1 · dS

Likewise, the “self”-flux of a loop is defined by the flux
crossing the surface of a path when a current is flowing
in the path

Ψ11 =

∫

S1

B1 · dS
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The Geometry of Flux Calculations

The flux is linearly proportional to the current and
otherwise only a function of the geometry of the path

To see this, let’s calculate Ψ21 for filamental loops

Ψ21 =

∮

C2

A1 · dℓ2

but

A1 =
1

4πµ−1

0

∮

C1

I1dℓ1
R−R1

substituting, we have a double integral

Ψ21 =
I1

4πµ−1

0

∮

C2

(
∮

C1

dℓ1
R− R1

)

· dℓ2
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Geometry of Flux (cont)

dℓ1 dℓ2

R2 -R1

R2

R1

We thus have a simple formula that only involves the
magnitude of the current and the average distance
between every two points on the loops

Ψ21 =
I1

4πµ−1

0

∮

C2

∮

C1

dℓ1 · dℓ2
R2 − R1
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Mutual and Self Inductance

Since the flux is proportional to the current by a
geometric factor, we may write

Ψ21 = M21I1

We call the factor M21 the mutual inductance

M21 =
Ψ21

I1
=

1

4πµ−1

0

∮

C2

∮

C1

dℓ1 · dℓ2
R2 −R1

The units of M are H since [µ] = H/m.

It’s clear that mutual inductance is reciprocal,
M21 = M12

The “self-flux” mutual inductance is simply called the
self-inductance and donated by L1 = M11
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System of Mutual Inductance Equations

If we generalize to a system of current loops we have a
system of equations

Ψ1 = L1I1 +M12I2 + . . .M1NIN
...

ΨN = MN1I1 +MN2I2 + . . . LNIN

Or in matrix form ψ = M i, where M is the inductance
matrix.

This equation resembles q = Cv, where C is the
capacitance matrix.
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Solenoid Magnetic Field

We have seen that a tightly
wound long long solenoid
has B = 0 outside and
Bx = 0 inside, so that by
Ampère’s law

Byℓ = NIµ0

where N is the number of
current loops crossing the
surface of the path.

The vertical magnetic field
is therefore constant

By =
NIµ0

ℓ
= µ0In
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Solenoid Inductance

The flux per turn is therefore simply given by

Ψturn = πa2By

The total flux through N turns is thus

Ψ = NΨturn = Nπa2By

Ψ = µ0

N2πa2

ℓ
I

The solenoid inductance is thus

L =
Ψ

I
=
µ0N

2πa2

ℓ
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Coaxial Conductor

S

In transmission line problems, we
need to compute inductance/unit
length. Consider the shaded area
from r = a to r = b

The magnetic field in the region
between conductors if easily
computed

∮

B · dℓ = Bφ2πr = µ0I

The external flux (excluding the volume of the ideal
conductors) is given by

ψ′ =

∫ b

a

Bφdr =
µ0I

2π

∫ b

a

dr

r
=
µ0I

2π
ln

(

b

a

)
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Coaxial Transmission Line (cont)

The inductance per unit length is therefore

L′ =
µ0

2π
ln

(

b

a

)

[H/m]

Recall that the product of inductance and capacitance
per unit length is a constant

L′C ′ =
1

c2

where c is the speed of light in the medium. Thus we
can also calculate the capacitance per unit length
without any extra work.
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Magnetization Vector

We’d like to study magnetic fields in magnetic materials.
Let’s define the magnetization vector as

M = lim
∆V →0

∑

k mk

∆V

where mk is the magnetic dipole of an atom or molecule

The vector potential due to these magnetic dipoles is
given by in a differential volume dv′ is given by

dA = µ0

M × r̂

4πR2
dv′

so

A =
µ0

4π

∫

V ′

M × r̂

R2
dv′
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Vector Potential

Using

∇
′

(

1

R

)

=
r̂

R2

A =
µ0

4π

∫

V ′

M ×∇
′

(

1

R

)

dv′

Consider the vector identity

∇
′
×

(

M

R

)

=
1

R
∇

′
× M + ∇

′

(

1

R

)

× M

We can thus break the vector potential into two terms

A =
µ0

4π

∫

V ′

∇′ × M

R
dv′ −

µ0

4π

∫

V ′

∇
′
×

(

M

R

)

dv′

University of California, Berkeley EECS 117 Lecture 16 – p. 14/21



Another Divergence Theorem

Consider the vector u = a× v, where a is an arbitrary
constant. Then

∇ · u = ∇·(a × v) = (∇× a)·v−(∇× v)·a = − (∇× v)·a

Now apply the Divergence Theorem to ∇ · u

∫

V

− (∇× v) · adV =

∮

S

((a × v) · u) · dS

Re-ordering the vector triple product

−

∮

S

(a · v × n) · dS
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Another Divergence Thm (cont)

Since the vector a is constant, we can pull it out of the
integrals

a ·

∫

V

(−∇× v) dV = a ·

∮

S

r × n · dS

The vector a is arbitrary, so we have
∫

V

(∇× v) dV = −

∮

S

r × n · dS

Applying this to the second term of the vector potential
∫

V ′

∇
′
×

(

M

R

)

dv′ = −

∮

S

M × n̂

R
· dS
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Vector Potential due to Magnetization

The vector potential due to magnetization has a volume
component and a surface component

A =
µ0

4π

∫

V ′

∇′ × M

R
dv′ +

µ0

4π

∮

S

M × n̂

R
· dSdv′

We can thus define an equivalent magnetic volume
current density

Jm = ∇× M

and an equivalent magnetic surface current density

Js = M × n̂
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Volume and Surface Currents

n̂

Js

Js

Js

In the figure above, we can see that for uniform
magnetization, all the internal currents cancel and only
the magnetization vector on the boundary (surface)
contributes to the integral
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Relative Permeability

We can include the effects of materials on the
macroscopic magnetic field by including a volume
current ∇× M in Ampère’s eq

∇× B = µ0J = µ0(J + ∇× M)

or

∇×
B

µ0

− M = J

We thus have defined a new quantity H

H =
B

µ0

− M

The units of H, the magnetic field, are A/m
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Ampere’s Equation for Media

We can thus state that for any medium under static
conditions

∇× H = J

equivalently
∮

C

H · dℓ = I

Linear materials respond to the external field in a linear
fashion, so

M = χmH

so
B = µ(1 + χm)H = µH

or

H =
1

µ
B
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Magnetic Materials

Magnetic materials are classified as follows

Diamagnetic: µr ≤ 1, usually χm is a small negative
number

Paramagnetic: µr ≥ 1, usually χm is a small positive
number

Ferromagnetic: µr ≫ 1, thus χm is a large positive
number

Most materials in nature are diamagnetic. To fully
understand the magnetic behavior of materials requires
a detailed study (and quantum mechanics)

In this class we mostly assume µ ≈ µ0
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