EECS 117

Lecture 16: Magnetic Flux and Magnetization

Prof. Niknejad

University of California, Berkeley

University of California, Berkeley

EECS 117 Lecture 16 - p. 1/2

Magnetic Flux

 Magnetic flux plays an important role in many EM problems (in analogy with electric charge)

$$\Psi = \int_S \mathbf{B} \cdot d\mathbf{S}$$

Due to the absence of magnetic charge

$$\Psi = \oint_S \mathbf{B} \cdot d\mathbf{S} \equiv 0$$

but net flux can certainly cross an open surface.

Magnetic Flux and Vector Potential

Magnetic flux is independent of the surface but only depends on the curve bounding the surface. This is easy to show since

$$\Psi = \int_{S} \mathbf{B} \cdot d\mathbf{S} = \int_{S} \nabla \times \mathbf{A} \cdot d\mathbf{S} = \oint_{C} \mathbf{A} \cdot d\ell$$
$$\Psi = \int_{S_{1}} \mathbf{B} \cdot d\mathbf{S} = \int_{S_{2}} \mathbf{B} \cdot d\mathbf{S}$$

Flux Linkage

• Consider the flux crossing surface S_2 due to a current flowing in loop I_1

$$\Psi_{21} = \int_{S_2} \mathbf{B_1} \cdot d\mathbf{S}$$

Likewise, the "self"-flux of a loop is defined by the flux crossing the surface of a path when a current is flowing in the path

$$\Psi_{11} = \int_{S_1} \mathbf{B_1} \cdot d\mathbf{S}$$

University of California, Berkeley

The Geometry of Flux Calculations

- The flux is linearly proportional to the current and otherwise only a function of the geometry of the path
- To see this, let's calculate Ψ_{21} for filamental loops

$$\Psi_{21} = \oint_{C_2} \mathbf{A_1} \cdot d\ell_2$$

but

$$\mathbf{A_1} = \frac{1}{4\pi\mu_0^{-1}} \oint_{C_1} \frac{I_1 d\ell_1}{R - R_1}$$

substituting, we have a double integral

$$\Psi_{21} = \frac{I_1}{4\pi\mu_0^{-1}} \oint_{C_2} \left(\oint_{C_1} \frac{d\ell_1}{R - R_1} \right) \cdot d\ell_2$$

Geometry of Flux (cont)

We thus have a simple formula that only involves the magnitude of the current and the average distance between every two points on the loops

$$\Psi_{21} = \frac{I_1}{4\pi\mu_0^{-1}} \oint_{C_2} \oint_{C_1} \frac{d\ell_1 \cdot d\ell_2}{R_2 - R_1}$$

Mutual and Self Inductance

Since the flux is proportional to the current by a geometric factor, we may write

$$\Psi_{21} = M_{21}I_1$$

• We call the factor M_{21} the mutual inductance

$$M_{21} = \frac{\Psi_{21}}{I_1} = \frac{1}{4\pi\mu_0^{-1}} \oint_{C_2} \oint_{C_1} \frac{d\ell_1 \cdot d\ell_2}{R_2 - R_1}$$

- The units of *M* are H since $[\mu] = H/m$.
- It's clear that mutual inductance is reciprocal, $M_{21} = M_{12}$
- The "self-flux" mutual inductance is simply called the self-inductance and donated by $L_1 = M_{11}$

System of Mutual Inductance Equations

If we generalize to a system of current loops we have a system of equations

$$\Psi_{1} = L_{1}I_{1} + M_{12}I_{2} + \dots M_{1N}I_{N}$$

$$\vdots$$

$$\Psi_{N} = M_{N1}I_{1} + M_{N2}I_{2} + \dots L_{N}I_{N}$$

- Or in matrix form $\psi = M\mathbf{i}$, where M is the inductance matrix.
- This equation resembles q = Cv, where C is the capacitance matrix.

Solenoid Magnetic Field

We have seen that a tightly wound long long solenoid has B = 0 outside and $B_x = 0$ inside, so that by Ampère's law

$$B_y \ell = N I \mu_0$$

- where N is the number of current loops crossing the surface of the path.
- The vertical magnetic field is therefore constant

$$B_y = \frac{NI\mu_0}{\ell} = \mu_0 In$$

Solenoid Inductance

The flux per turn is therefore simply given by

$$\Psi_{\rm turn} = \pi a^2 B_y$$

 \checkmark The total flux through N turns is thus

$$\Psi = N\Psi_{\rm turn} = N\pi a^2 B_y$$

$$\Psi = \mu_0 \frac{N^2 \pi a^2}{\ell} I$$

The solenoid inductance is thus

$$L = \frac{\Psi}{I} = \frac{\mu_0 N^2 \pi a^2}{\ell}$$

Coaxial Conductor

- In transmission line problems, we need to compute inductance/unit length. Consider the shaded area from r = a to r = b
- The magnetic field in the region between conductors if easily computed

$$\oint \mathbf{B} \cdot d\ell = B_{\phi} 2\pi r = \mu_0 I$$

The external flux (excluding the volume of the ideal conductors) is given by

$$\psi' = \int_a^b B_\phi dr = \frac{\mu_0 I}{2\pi} \int_a^b \frac{dr}{r} = \frac{\mu_0 I}{2\pi} \ln\left(\frac{b}{a}\right)$$

Coaxial Transmission Line (cont)

The inductance per unit length is therefore

$$L' = \frac{\mu_0}{2\pi} \ln\left(\frac{b}{a}\right) \quad [\text{H/m}]$$

Recall that the product of inductance and capacitance per unit length is a constant

$$L'C' = \frac{1}{c^2}$$

where c is the speed of light in the medium. Thus we can also calculate the capacitance per unit length without any extra work.

Magnetization Vector

We'd like to study magnetic fields in magnetic materials. Let's define the magnetization vector as

$$\mathbf{M} = \lim_{\Delta V \to 0} \frac{\sum_k \mathbf{m}_k}{\Delta V}$$

- ${\ensuremath{\,\bullet\)}}$ where $\mathbf{m}_{\mathbf{k}}$ is the magnetic dipole of an atom or molecule
- The vector potential due to these magnetic dipoles is given by in a differential volume dv' is given by

$$d\mathbf{A} = \mu_0 \frac{\mathbf{M} \times \hat{\mathbf{r}}}{4\pi R^2} dv'$$

SO

$$\mathbf{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\mathbf{M} \times \hat{\mathbf{r}}}{R^2} dv'$$

Vector Potential

Using

$$\nabla'\left(\frac{1}{R}\right) = \frac{\hat{\mathbf{r}}}{R^2}$$
$$\mathbf{A} = \frac{\mu_0}{4\pi} \int_{V'} \mathbf{M} \times \nabla'\left(\frac{1}{R}\right) dv'$$

Consider the vector identity

$$\nabla' \times \left(\frac{\mathbf{M}}{R}\right) = \frac{1}{R} \nabla' \times \mathbf{M} + \nabla' \left(\frac{1}{R}\right) \times \mathbf{M}$$

We can thus break the vector potential into two terms

$$\mathbf{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\nabla' \times \mathbf{M}}{R} dv' - \frac{\mu_0}{4\pi} \int_{V'} \nabla' \times \left(\frac{\mathbf{M}}{R}\right) dv'$$

University of California. Berkelev

Another Divergence Theorem

Consider the vector $\mathbf{u} = \mathbf{a} \times \mathbf{v}$, where \mathbf{a} is an arbitrary constant. Then

$$\nabla \cdot \mathbf{u} = \nabla \cdot (\mathbf{a} \times \mathbf{v}) = (\nabla \times \mathbf{a}) \cdot \mathbf{v} - (\nabla \times \mathbf{v}) \cdot \mathbf{a} = -(\nabla \times \mathbf{v}) \cdot \mathbf{a}$$

Now apply the Divergence Theorem to $\nabla \cdot \mathbf{u}$

$$\int_{V} - (\nabla \times \mathbf{v}) \cdot \mathbf{a} dV = \oint_{S} \left((\mathbf{a} \times \mathbf{v}) \cdot \mathbf{u} \right) \cdot d\mathbf{S}$$

Re-ordering the vector triple product

$$-\oint_{S} (\mathbf{a} \cdot \mathbf{v} \times \mathbf{n}) \cdot d\mathbf{S}$$

Another Divergence Thm (cont)

Since the vector a is constant, we can pull it out of the integrals

$$\mathbf{a} \cdot \int_{V} \left(-\nabla \times \mathbf{v} \right) dV = \mathbf{a} \cdot \oint_{S} \mathbf{r} \times \mathbf{n} \cdot d\mathbf{S}$$

The vector a is arbitrary, so we have

$$\int_{V} \left(\nabla \times \mathbf{v} \right) dV = -\oint_{S} \mathbf{r} \times \mathbf{n} \cdot d\mathbf{S}$$

Applying this to the second term of the vector potential

$$\int_{V'} \nabla' \times \left(\frac{\mathbf{M}}{R}\right) dv' = -\oint_S \frac{\mathbf{M} \times \hat{\mathbf{n}}}{R} \cdot d\mathbf{S}$$

Vector Potential due to Magnetization

The vector potential due to magnetization has a volume component and a surface component

$$\mathbf{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\nabla' \times \mathbf{M}}{R} dv' + \frac{\mu_0}{4\pi} \oint_S \frac{\mathbf{M} \times \hat{\mathbf{n}}}{R} \cdot d\mathbf{S} dv'$$

We can thus define an equivalent magnetic volume current density

$$\mathbf{J_m} = \nabla \times \mathbf{M}$$

and an equivalent magnetic surface current density

$$\mathbf{J_s} = \mathbf{M} \times \mathbf{\hat{n}}$$

Volume and Surface Currents

In the figure above, we can see that for uniform magnetization, all the internal currents cancel and only the magnetization vector on the boundary (surface) contributes to the integral

Relative Permeability

We can include the effects of materials on the macroscopic magnetic field by including a volume current $\nabla \times M$ in Ampère's eq

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} = \mu_0 (\mathbf{J} + \nabla \times \mathbf{M})$$

or

$$abla imes rac{\mathbf{B}}{\mu_{\mathbf{0}}} - \mathbf{M} = \mathbf{J}$$

We thus have defined a new quantity H

$$\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$$

 \checkmark The units of H, the magnetic field, are A/m

Ampere's Equation for Media

We can thus state that for any medium under static conditions

$$abla ext{H} = \mathbf{J}$$

equivalently

$$\oint_C \mathbf{H} \cdot d\ell = I$$

Linear materials respond to the external field in a linear fashion, so

$$\mathbf{M} = \chi_m \mathbf{H}$$

SO

$$\mathbf{B} = \mu (1 + \chi_m) \mathbf{H} = \mu \mathbf{H}$$

or

EECS 117 Lecture 16 - p. 20/

Magnetic Materials

- Magnetic materials are classified as follows
- Diamagnetic: $\mu_r \leq 1$, usually χ_m is a small negative number
- Paramagnetic: $\mu_r \ge 1$, usually χ_m is a small positive number
- Ferromagnetic: $\mu_r \gg 1$, thus χ_m is a large positive number
- Most materials in nature are diamagnetic. To fully understand the magnetic behavior of materials requires a detailed study (and quantum mechanics)
- In this class we mostly assume $\mu \approx \mu_0$