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Biot Savart Law and Ampere’s Law
In the last lecture, we have shown that the magnetic force 

exerted on a small segment of wire flowing a current I with 
length dl is equal to

where B is the magnetic flux density, and . The H is 
called the  and µ is the permeability of the medium, which is the 
medium properties just like ε.

The magnetic field intensity H induced by a current carrying wire 
segment has been shown to be
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Biot Savart Law and Ampere’s Law (cont.)
is a vector pointing towards the point of interest from the 

origin, and    is a vector towards the wire segment. The second 
expression is for a non-uniform current distribution in the 
magnetic field generating system (like a wire). 

Ampere’s circuital law states that the magnetic field intensity 
integrated along a closed path is equal to the current flowing 
through the surface enclosed by the path.
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Off-axis Magnetic Field of a Straight Wire
Consider a segment of a straight wire of 

length 2a. Using Biot-Savart Law, the 
magnetic flux density due to a small segment 
dl is given by

The B vector is pointing into the paper.
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On-axis Magnetic Field of a Straight Wire
If the point of interest is at the midpoint of the wire, z’ = 0, and 
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On-axis Magnetic Field of a Circular Loop
Consider now the magnetic 

field along the axis of a circular 
loop wire.

The green segment induces a 
magnetic field in green. 
Because of circular symmetry, 
the segment (red) on the 
opposite side create a field (red) 
of equal magnitude. The 
resultant field is along the z-
axis.
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On-axis Magnetic Field of a Circular Loop
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On-axis Magnetic Field of a Solenoid
z

-l l
Using the result above, we can calculate the on-axis 

magnetic field inside the solenoid 

Consider a solenoid with n number of windings per 
meter. The length of the solenoid is 2l.
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On-axis Magnetic Field of a Solenoid (cont.)
where N = 2nl, the total number of windings in the 

solenoid.

For an infinitely long solenoid, nIBz 0µ=



Ampere’s Circuital Law Version of a Solenoid

A B

CD

C’D’

lB
r The cross 

section of the 
solenoid. 

We can obtain the same information, and even learn more by 
using the Ampere’s circuital law.

The line integral of the B can be broken into the segment parts
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Solenoid (Ampere’s Circuital Law)
Based on the result we obtained in the previous calculation,    inside 

the solenoid is only in the z direction. The geometry implies that this 
would be true also for the magnetic field outside the solenoid. So,

If we consider the path ABC’D’, the path integrals along BC’ and 
D’A are zero because of the above reason. Because there is not current 
flowing through the area enclosed by the closed path,

This result holds if the hypothetical box ABC’D’ is drawn such that 
the segment C’D’ is at infinity. This implies that the magnetic field is 
uniform everywhere outside the solenoid. This contradicts our intuition 
of a field falling down to zero at infinity and also experimental 
observation. 
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Solenoid (Ampere’s Circuital Law)
The only solution to this contradiction is that the magnetic field 
outside of solenoid is zero. This coincides with experimental results.

The result is: 

If the segment CD is far away from the ends of the solenoid, B is 
uniform along the segment. Thus,

This result is the same as the one for the infinite solenoid.

If we move the segment CD up and down, since the current enclosed 
remains the same, the path integral along CD is the same. So the
magnetic field is uniform inside the solenoid. For an infinite solenoid 
or the region where end effects are negligible, the field everywhere
inside the solenoid is equal to the above result.
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Vector Potential
Since there is no magnetic monopole , can be 

expressed as , the curl of vector potential.

For the two different expressions of B, we have 
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Magnetic Dipole

x

z
(r,0,θ)

a
θ

r

φ’
ψ

Top view

x

R

For a current loop, the magnetic field off axis can be calculated 
by finding vector potential.



Magnetic Dipole
The vector potential due to the green segment has a direction of 

the green arrow. Because of symmetry, the potential due to the 
red segment almost cancel the green vector potential and the 
resultant potential due to these two segments has a direction 
normal to the xz plane, or in general in     direction. Without loss 
of generality, we place the point of interest in the xz plane.

The φ component of A due to a segment is equal to

The total is found as the integral around the loop
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Magnetic Dipole
where

For r >> a

or

The total vector potential is

are then equal to
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Magnetic Dipole
The magnitude of the magnetic dipole moment, the counterpart 

of electric dipole, is defined as

The dipole direction is pointing up from the loop for the counter-
clockwise I direction (as in this case), and vice versa. 

The vector potential can then be expressed as
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